distilbert-base-uncased_fold_2_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8833
  • F1: 0.7841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 290 0.4060 0.8070
0.3981 2.0 580 0.4534 0.8072
0.3981 3.0 870 0.5460 0.7961
0.1985 4.0 1160 0.8684 0.7818
0.1985 5.0 1450 0.9009 0.7873
0.0844 6.0 1740 1.1529 0.7825
0.0329 7.0 2030 1.3185 0.7850
0.0329 8.0 2320 1.4110 0.7862
0.0109 9.0 2610 1.4751 0.7784
0.0109 10.0 2900 1.6276 0.7723
0.0071 11.0 3190 1.6779 0.7861
0.0071 12.0 3480 1.6258 0.7850
0.0041 13.0 3770 1.6324 0.7903
0.0109 14.0 4060 1.7563 0.7932
0.0109 15.0 4350 1.6740 0.7906
0.0079 16.0 4640 1.7468 0.7944
0.0079 17.0 4930 1.7095 0.7879
0.0067 18.0 5220 1.7293 0.7912
0.0021 19.0 5510 1.7875 0.7848
0.0021 20.0 5800 1.7462 0.7906
0.0026 21.0 6090 1.8549 0.7815
0.0026 22.0 6380 1.8314 0.7860
0.0021 23.0 6670 1.8577 0.7839
0.0021 24.0 6960 1.8548 0.7883
0.0001 25.0 7250 1.8833 0.7841

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
113
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.