distilbert-base-uncased_fold_2_ternary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8941
  • F1: 0.7889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 294 0.6025 0.7402
0.5688 2.0 588 0.5025 0.7943
0.5688 3.0 882 0.6102 0.7794
0.2582 4.0 1176 0.8896 0.7835
0.2582 5.0 1470 1.0392 0.7821
0.1185 6.0 1764 1.0865 0.7848
0.0461 7.0 2058 1.2951 0.7686
0.0461 8.0 2352 1.3348 0.7821
0.0313 9.0 2646 1.4267 0.7876
0.0313 10.0 2940 1.4004 0.7957
0.0142 11.0 3234 1.5501 0.7794
0.0083 12.0 3528 1.5564 0.7903
0.0083 13.0 3822 1.5699 0.7876
0.0067 14.0 4116 1.7725 0.7794
0.0067 15.0 4410 1.7642 0.7767
0.0031 16.0 4704 1.7891 0.7848
0.0031 17.0 4998 1.8528 0.7740
0.0054 18.0 5292 1.8378 0.7781
0.003 19.0 5586 1.8223 0.7862
0.003 20.0 5880 1.7935 0.7930
0.0021 21.0 6174 1.9117 0.7808
0.0021 22.0 6468 1.8891 0.7930
0.0015 23.0 6762 1.9167 0.7916
0.0006 24.0 7056 1.9193 0.7862
0.0006 25.0 7350 1.8941 0.7889

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.