distilbert-base-uncased_fold_3_ternary

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7987
  • F1: 0.7460

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 289 0.5903 0.6893
0.5417 2.0 578 0.5822 0.7130
0.5417 3.0 867 0.6471 0.7385
0.2298 4.0 1156 0.8933 0.7322
0.2298 5.0 1445 1.1002 0.7147
0.1012 6.0 1734 1.2041 0.7249
0.0508 7.0 2023 1.3575 0.7195
0.0508 8.0 2312 1.3896 0.7385
0.018 9.0 2601 1.5363 0.7238
0.018 10.0 2890 1.5336 0.7364
0.0142 11.0 3179 1.6335 0.7308
0.0142 12.0 3468 1.6915 0.7295
0.0047 13.0 3757 1.7087 0.7427
0.0058 14.0 4046 1.7875 0.7378
0.0058 15.0 4335 1.7649 0.7438
0.0051 16.0 4624 1.7987 0.7460
0.0051 17.0 4913 1.8435 0.7404
0.0025 18.0 5202 1.9623 0.7257
0.0025 19.0 5491 1.9005 0.7304
0.0029 20.0 5780 1.9437 0.7374
0.0011 21.0 6069 1.9840 0.7268
0.0011 22.0 6358 1.9411 0.7346
0.0025 23.0 6647 1.9233 0.7438
0.0025 24.0 6936 1.9415 0.7395
0.0015 25.0 7225 1.9481 0.7411

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.