File size: 2,839 Bytes
d6c5a62
 
 
 
 
 
fd1b555
d6c5a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased_fold_3_ternary
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_fold_3_ternary

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7987
- F1: 0.7460

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 289  | 0.5903          | 0.6893 |
| 0.5417        | 2.0   | 578  | 0.5822          | 0.7130 |
| 0.5417        | 3.0   | 867  | 0.6471          | 0.7385 |
| 0.2298        | 4.0   | 1156 | 0.8933          | 0.7322 |
| 0.2298        | 5.0   | 1445 | 1.1002          | 0.7147 |
| 0.1012        | 6.0   | 1734 | 1.2041          | 0.7249 |
| 0.0508        | 7.0   | 2023 | 1.3575          | 0.7195 |
| 0.0508        | 8.0   | 2312 | 1.3896          | 0.7385 |
| 0.018         | 9.0   | 2601 | 1.5363          | 0.7238 |
| 0.018         | 10.0  | 2890 | 1.5336          | 0.7364 |
| 0.0142        | 11.0  | 3179 | 1.6335          | 0.7308 |
| 0.0142        | 12.0  | 3468 | 1.6915          | 0.7295 |
| 0.0047        | 13.0  | 3757 | 1.7087          | 0.7427 |
| 0.0058        | 14.0  | 4046 | 1.7875          | 0.7378 |
| 0.0058        | 15.0  | 4335 | 1.7649          | 0.7438 |
| 0.0051        | 16.0  | 4624 | 1.7987          | 0.7460 |
| 0.0051        | 17.0  | 4913 | 1.8435          | 0.7404 |
| 0.0025        | 18.0  | 5202 | 1.9623          | 0.7257 |
| 0.0025        | 19.0  | 5491 | 1.9005          | 0.7304 |
| 0.0029        | 20.0  | 5780 | 1.9437          | 0.7374 |
| 0.0011        | 21.0  | 6069 | 1.9840          | 0.7268 |
| 0.0011        | 22.0  | 6358 | 1.9411          | 0.7346 |
| 0.0025        | 23.0  | 6647 | 1.9233          | 0.7438 |
| 0.0025        | 24.0  | 6936 | 1.9415          | 0.7395 |
| 0.0015        | 25.0  | 7225 | 1.9481          | 0.7411 |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1