distilbert-base-uncased_fold_4_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5144
  • F1: 0.8245

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 289 0.3756 0.8175
0.3977 2.0 578 0.3672 0.8336
0.3977 3.0 867 0.4997 0.8276
0.1972 4.0 1156 0.6597 0.8244
0.1972 5.0 1445 0.8501 0.8195
0.0824 6.0 1734 1.0074 0.8097
0.037 7.0 2023 1.1122 0.8131
0.037 8.0 2312 1.0963 0.8189
0.0182 9.0 2601 1.2511 0.8125
0.0182 10.0 2890 1.2255 0.8141
0.0121 11.0 3179 1.3120 0.8187
0.0121 12.0 3468 1.4182 0.8165
0.0079 13.0 3757 1.4142 0.8218
0.0081 14.0 4046 1.4765 0.8150
0.0081 15.0 4335 1.3510 0.8187
0.0109 16.0 4624 1.3455 0.8255
0.0109 17.0 4913 1.4157 0.8234
0.0022 18.0 5202 1.4651 0.8197
0.0022 19.0 5491 1.4388 0.8267
0.0017 20.0 5780 1.4552 0.8304
0.0005 21.0 6069 1.5357 0.8248
0.0005 22.0 6358 1.4924 0.8241
0.0009 23.0 6647 1.4865 0.8248
0.0009 24.0 6936 1.4697 0.8275
0.0013 25.0 7225 1.5144 0.8245

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.