|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: distilbert-base-uncased_fold_6_binary |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased_fold_6_binary |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6838 |
|
- F1: 0.7881 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 1.0 | 290 | 0.4181 | 0.7732 | |
|
| 0.4097 | 2.0 | 580 | 0.3967 | 0.7697 | |
|
| 0.4097 | 3.0 | 870 | 0.5811 | 0.7797 | |
|
| 0.2034 | 4.0 | 1160 | 0.8684 | 0.7320 | |
|
| 0.2034 | 5.0 | 1450 | 0.9116 | 0.7718 | |
|
| 0.0794 | 6.0 | 1740 | 1.0588 | 0.7690 | |
|
| 0.0278 | 7.0 | 2030 | 1.2092 | 0.7738 | |
|
| 0.0278 | 8.0 | 2320 | 1.2180 | 0.7685 | |
|
| 0.0233 | 9.0 | 2610 | 1.3005 | 0.7676 | |
|
| 0.0233 | 10.0 | 2900 | 1.4009 | 0.7634 | |
|
| 0.0093 | 11.0 | 3190 | 1.4528 | 0.7805 | |
|
| 0.0093 | 12.0 | 3480 | 1.4803 | 0.7859 | |
|
| 0.0088 | 13.0 | 3770 | 1.4775 | 0.7750 | |
|
| 0.0077 | 14.0 | 4060 | 1.6171 | 0.7699 | |
|
| 0.0077 | 15.0 | 4350 | 1.6429 | 0.7636 | |
|
| 0.0047 | 16.0 | 4640 | 1.5619 | 0.7819 | |
|
| 0.0047 | 17.0 | 4930 | 1.5833 | 0.7724 | |
|
| 0.0034 | 18.0 | 5220 | 1.6400 | 0.7853 | |
|
| 0.0008 | 19.0 | 5510 | 1.6508 | 0.7792 | |
|
| 0.0008 | 20.0 | 5800 | 1.6838 | 0.7881 | |
|
| 0.0009 | 21.0 | 6090 | 1.6339 | 0.7829 | |
|
| 0.0009 | 22.0 | 6380 | 1.6824 | 0.7806 | |
|
| 0.0016 | 23.0 | 6670 | 1.6867 | 0.7876 | |
|
| 0.0016 | 24.0 | 6960 | 1.7107 | 0.7877 | |
|
| 0.0013 | 25.0 | 7250 | 1.6933 | 0.7812 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.0 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|