distilbert-base-uncased_fold_6_ternary

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6625
  • F1: 0.7588

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 292 0.5117 0.7306
0.5701 2.0 584 0.5273 0.7296
0.5701 3.0 876 0.6037 0.7415
0.2468 4.0 1168 0.7132 0.7318
0.2468 5.0 1460 0.8980 0.7504
0.12 6.0 1752 1.0343 0.7369
0.0486 7.0 2044 1.1860 0.7333
0.0486 8.0 2336 1.3348 0.7437
0.019 9.0 2628 1.3040 0.7561
0.019 10.0 2920 1.4649 0.7293
0.0152 11.0 3212 1.4870 0.7431
0.0078 12.0 3504 1.5668 0.7455
0.0078 13.0 3796 1.5280 0.7378
0.0091 14.0 4088 1.5672 0.7410
0.0091 15.0 4380 1.5948 0.7491
0.0052 16.0 4672 1.6625 0.7588
0.0052 17.0 4964 1.6544 0.7411
0.0048 18.0 5256 1.7124 0.7425
0.0024 19.0 5548 1.7211 0.7477
0.0024 20.0 5840 1.8216 0.7373
0.001 21.0 6132 1.8325 0.7361
0.001 22.0 6424 1.8089 0.7498
0.0015 23.0 6716 1.8026 0.7506
0.0005 24.0 7008 1.8026 0.7464
0.0005 25.0 7300 1.8043 0.7464

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.