distilbert-base-uncased_fold_7_ternary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0462
  • F1: 0.7836

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 291 0.5719 0.7490
0.5541 2.0 582 0.5563 0.7836
0.5541 3.0 873 0.7301 0.7849
0.2509 4.0 1164 0.8073 0.7926
0.2509 5.0 1455 1.0842 0.7823
0.1182 6.0 1746 1.1721 0.7900
0.0537 7.0 2037 1.4060 0.7785
0.0537 8.0 2328 1.4497 0.7836
0.0262 9.0 2619 1.4722 0.7708
0.0262 10.0 2910 1.6529 0.7772
0.0131 11.0 3201 1.6573 0.7862
0.0131 12.0 3492 1.6986 0.7823
0.0115 13.0 3783 1.7765 0.7810
0.0098 14.0 4074 1.8036 0.7862
0.0098 15.0 4365 1.7684 0.7926
0.0028 16.0 4656 1.8385 0.7836
0.0028 17.0 4947 1.7903 0.7887
0.0054 18.0 5238 1.9065 0.7810
0.0007 19.0 5529 1.9331 0.7875
0.0007 20.0 5820 1.9384 0.7849
0.0006 21.0 6111 1.8687 0.7887
0.0006 22.0 6402 2.0603 0.7785
0.0009 23.0 6693 2.0403 0.7836
0.0009 24.0 6984 2.0348 0.7810
0.0005 25.0 7275 2.0462 0.7836

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.