roberta-base_fold_1_binary_v1
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4984
- F1: 0.8339
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 288 | 0.3819 | 0.8117 |
0.4108 | 2.0 | 576 | 0.3696 | 0.8281 |
0.4108 | 3.0 | 864 | 0.4890 | 0.8343 |
0.2261 | 4.0 | 1152 | 0.7605 | 0.8298 |
0.2261 | 5.0 | 1440 | 0.7754 | 0.8307 |
0.1404 | 6.0 | 1728 | 0.7650 | 0.8174 |
0.0962 | 7.0 | 2016 | 0.8539 | 0.8315 |
0.0962 | 8.0 | 2304 | 1.0770 | 0.8263 |
0.0433 | 9.0 | 2592 | 1.1450 | 0.8292 |
0.0433 | 10.0 | 2880 | 1.1700 | 0.8205 |
0.0344 | 11.0 | 3168 | 1.2376 | 0.8241 |
0.0344 | 12.0 | 3456 | 1.2688 | 0.8329 |
0.0219 | 13.0 | 3744 | 1.3276 | 0.8283 |
0.0123 | 14.0 | 4032 | 1.2930 | 0.8320 |
0.0123 | 15.0 | 4320 | 1.4631 | 0.8266 |
0.0177 | 16.0 | 4608 | 1.4326 | 0.8270 |
0.0177 | 17.0 | 4896 | 1.4770 | 0.8334 |
0.0053 | 18.0 | 5184 | 1.5972 | 0.8214 |
0.0053 | 19.0 | 5472 | 1.5331 | 0.8327 |
0.0045 | 20.0 | 5760 | 1.5487 | 0.8359 |
0.0086 | 21.0 | 6048 | 1.4610 | 0.8315 |
0.0086 | 22.0 | 6336 | 1.4685 | 0.8353 |
0.0071 | 23.0 | 6624 | 1.4933 | 0.8358 |
0.0071 | 24.0 | 6912 | 1.4898 | 0.8310 |
0.0022 | 25.0 | 7200 | 1.4984 | 0.8339 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.