xlnet-base-cased_fold_9_binary_v1
This model is a fine-tuned version of xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7204
- F1: 0.8203
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 291 | 0.4045 | 0.8001 |
0.4262 | 2.0 | 582 | 0.3914 | 0.8297 |
0.4262 | 3.0 | 873 | 0.5050 | 0.8029 |
0.2488 | 4.0 | 1164 | 0.7681 | 0.8007 |
0.2488 | 5.0 | 1455 | 0.8349 | 0.8262 |
0.1483 | 6.0 | 1746 | 0.9045 | 0.8220 |
0.0894 | 7.0 | 2037 | 1.1584 | 0.8165 |
0.0894 | 8.0 | 2328 | 1.1818 | 0.8300 |
0.0389 | 9.0 | 2619 | 1.3332 | 0.8147 |
0.0389 | 10.0 | 2910 | 1.2373 | 0.8285 |
0.038 | 11.0 | 3201 | 1.3156 | 0.8234 |
0.038 | 12.0 | 3492 | 1.3251 | 0.8341 |
0.0211 | 13.0 | 3783 | 1.3144 | 0.8255 |
0.0158 | 14.0 | 4074 | 1.5686 | 0.8168 |
0.0158 | 15.0 | 4365 | 1.5382 | 0.8185 |
0.0165 | 16.0 | 4656 | 1.5203 | 0.8282 |
0.0165 | 17.0 | 4947 | 1.5352 | 0.8136 |
0.0142 | 18.0 | 5238 | 1.4799 | 0.8243 |
0.0062 | 19.0 | 5529 | 1.5030 | 0.8294 |
0.0062 | 20.0 | 5820 | 1.6264 | 0.8094 |
0.0078 | 21.0 | 6111 | 1.6949 | 0.8122 |
0.0078 | 22.0 | 6402 | 1.7106 | 0.8139 |
0.0043 | 23.0 | 6693 | 1.7234 | 0.8218 |
0.0043 | 24.0 | 6984 | 1.7344 | 0.8208 |
0.0028 | 25.0 | 7275 | 1.7204 | 0.8203 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.