|
--- |
|
license: apache-2.0 |
|
language: ab |
|
tags: |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- robust-speech-event |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: wav2vec2-xls-r-300m-ab-CV8 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: ab |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 44.9 |
|
--- |
|
|
|
|
|
# wav2vec2-xls-r-300m-ab-CV8 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2105 |
|
- Wer: 0.5474 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 300 |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 4.7729 | 0.63 | 500 | 3.0624 | 1.0021 | |
|
| 2.7348 | 1.26 | 1000 | 1.0460 | 0.9815 | |
|
| 1.2756 | 1.9 | 1500 | 0.4618 | 0.8309 | |
|
| 1.0419 | 2.53 | 2000 | 0.3725 | 0.7449 | |
|
| 0.9491 | 3.16 | 2500 | 0.3368 | 0.7345 | |
|
| 0.9006 | 3.79 | 3000 | 0.3014 | 0.6936 | |
|
| 0.8519 | 4.42 | 3500 | 0.2852 | 0.6767 | |
|
| 0.8243 | 5.06 | 4000 | 0.2701 | 0.6504 | |
|
| 0.7902 | 5.69 | 4500 | 0.2641 | 0.6221 | |
|
| 0.7767 | 6.32 | 5000 | 0.2549 | 0.6192 | |
|
| 0.7516 | 6.95 | 5500 | 0.2515 | 0.6179 | |
|
| 0.737 | 7.59 | 6000 | 0.2408 | 0.5963 | |
|
| 0.7217 | 8.22 | 6500 | 0.2429 | 0.6261 | |
|
| 0.7101 | 8.85 | 7000 | 0.2366 | 0.5687 | |
|
| 0.6922 | 9.48 | 7500 | 0.2277 | 0.5680 | |
|
| 0.6866 | 10.11 | 8000 | 0.2242 | 0.5847 | |
|
| 0.6703 | 10.75 | 8500 | 0.2222 | 0.5803 | |
|
| 0.6649 | 11.38 | 9000 | 0.2247 | 0.5765 | |
|
| 0.6513 | 12.01 | 9500 | 0.2182 | 0.5644 | |
|
| 0.6369 | 12.64 | 10000 | 0.2128 | 0.5508 | |
|
| 0.6425 | 13.27 | 10500 | 0.2132 | 0.5514 | |
|
| 0.6399 | 13.91 | 11000 | 0.2116 | 0.5495 | |
|
| 0.6208 | 14.54 | 11500 | 0.2105 | 0.5474 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.3 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.1 |
|
- Tokenizers 0.10.3 |
|
|