SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("enochlev/xlm-similarity-large")
# Run inference
sentences = [
'Oh, okay, so just the iPhone ## only.',
"Yes, that's correct for know. Our price is £ and then it won't go down to £ after you apply the discount.",
"I'm now going to send you a one time code. The first message is a warning to not give the code to scammers pretending to work for O2. The second message is the code to continue with your request.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5907 |
spearman_cosine | 0.2789 |
pearson_manhattan | 0.6309 |
spearman_manhattan | 0.2781 |
pearson_euclidean | 0.6349 |
spearman_euclidean | 0.2789 |
pearson_dot | 0.5907 |
spearman_dot | 0.2789 |
pearson_max | 0.6349 |
spearman_max | 0.2789 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,960 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 5 tokens
- mean: 20.94 tokens
- max: 66 tokens
- min: 13 tokens
- mean: 28.35 tokens
- max: 71 tokens
- min: 0.2
- mean: 0.22
- max: 1.0
- Samples:
text1 text2 label Hello, welcome to O2. My name is __ How can I help you today?
Thank you for calling over to my name is how can I help you.
1.0
Hello, welcome to O2. My name is __ How can I help you today?
I was about to ask us to confirm the email address that we have on the account or on your file. So what I can you tell me your email address.
0.2
Hello, welcome to O2. My name is __ How can I help you today?
Are you planning to get a new sim only plan or a new phone?
0.2
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,980 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 8 tokens
- mean: 36.02 tokens
- max: 241 tokens
- min: 13 tokens
- mean: 28.35 tokens
- max: 71 tokens
- min: 0.2
- mean: 0.22
- max: 1.0
- Samples:
text1 text2 label So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.
The same discounts you can have been added as an additional line and do into your account. It needs be entitled to % discount off of the costs.
1.0
So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.
I was about to ask us to confirm the email address that we have on the account or on your file. So what I can you tell me your email address.
0.2
So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.
Are you planning to get a new sim only plan or a new phone?
0.2
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 50per_device_eval_batch_size
: 50learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 50per_device_eval_batch_size
: 50per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Validation Loss | sts_dev_spearman_max |
---|---|---|---|
1.0 | 160 | 0.1772 | 0.2789 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.2.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for enochlev/xlm-similarity-large
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on sts devself-reported0.591
- Spearman Cosine on sts devself-reported0.279
- Pearson Manhattan on sts devself-reported0.631
- Spearman Manhattan on sts devself-reported0.278
- Pearson Euclidean on sts devself-reported0.635
- Spearman Euclidean on sts devself-reported0.279
- Pearson Dot on sts devself-reported0.591
- Spearman Dot on sts devself-reported0.279
- Pearson Max on sts devself-reported0.635
- Spearman Max on sts devself-reported0.279