enochlev commited on
Commit
888e153
1 Parent(s): 50266dd

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7960
8
+ - loss:CoSENTLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: 'Okay, I got it. So just to give you the second price if ever for
12
+ the Samsung Galaxy is ##. It comes with a ## this one. Five gigabyte of data or
13
+ ## gigabyte it will only it will only give you a £39.05. That is for that is for
14
+ the #### G but I do suggest that you go with the equipment before because that
15
+ is only around £31.'
16
+ sentences:
17
+ - I can provide to you . Are you happy to go ahead with this?
18
+ - Thank you for calling over to my name is how can I help you.
19
+ - Thank you and could you please confirm to me what is your full name.
20
+ - source_sentence: His number well, so you're looking to travel abroad anytime soon.
21
+ sentences:
22
+ - I'm now going to read out some terms and conditions to complete the order.
23
+ - Can you provide me with character number one of your security answer please?
24
+ - So looking at your usage of your mobile data. I just wanna share with you that
25
+ your usage for the past six months. It says here it's up to gigabytes of mobile
26
+ data. Okay and in order for us to.
27
+ - source_sentence: Hello. Hi, thank you so much for patiently waiting. So, I'd look
28
+ into our accessory so for the airbags the one that we have an ongoing promotion
29
+ right now for the accessories is the airport second generation. So you can.
30
+ sentences:
31
+ - The same discounts you can have been added as an additional line and do into your
32
+ account. It needs be entitled to % discount off of the costs.
33
+ - Are you planning to get a new sim only plan or a new phone?
34
+ - I'm now going to send you a one time code. The first message is a warning to not
35
+ give the code to scammers pretending to work for O2. The second message is the
36
+ code to continue with your request.
37
+ - source_sentence: Okay, so you can know just spend. Yeah, but anytime via web chat
38
+ or customer Services. Okay.
39
+ sentences:
40
+ - So looking at your usage of your mobile data. I just wanna share with you that
41
+ your usage for the past six months. It says here it's up to gigabytes of mobile
42
+ data. Okay and in order for us to.
43
+ - Checking your account I can see you are on the and you have been paying £ per
44
+ month. Is that correct?
45
+ - So looking at your usage of your mobile data. I just wanna share with you that
46
+ your usage for the past six months. It says here it's up to gigabytes of mobile
47
+ data. Okay and in order for us to.
48
+ - source_sentence: 'Oh, okay, so just the iPhone ## only.'
49
+ sentences:
50
+ - So I'm actually now checking here just for me to get this deal that you had seen.
51
+ - I'm now going to send you a one time code. The first message is a warning to not
52
+ give the code to scammers pretending to work for O2. The second message is the
53
+ code to continue with your request.
54
+ - Yes, that's correct for know. Our price is £ and then it won't go down to £ after
55
+ you apply the discount.
56
+ pipeline_tag: sentence-similarity
57
+ library_name: sentence-transformers
58
+ metrics:
59
+ - pearson_cosine
60
+ - spearman_cosine
61
+ - pearson_manhattan
62
+ - spearman_manhattan
63
+ - pearson_euclidean
64
+ - spearman_euclidean
65
+ - pearson_dot
66
+ - spearman_dot
67
+ - pearson_max
68
+ - spearman_max
69
+ model-index:
70
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
71
+ results:
72
+ - task:
73
+ type: semantic-similarity
74
+ name: Semantic Similarity
75
+ dataset:
76
+ name: sts dev
77
+ type: sts_dev
78
+ metrics:
79
+ - type: pearson_cosine
80
+ value: 0.5906538719225906
81
+ name: Pearson Cosine
82
+ - type: spearman_cosine
83
+ value: 0.2789361723892506
84
+ name: Spearman Cosine
85
+ - type: pearson_manhattan
86
+ value: 0.630943535003128
87
+ name: Pearson Manhattan
88
+ - type: spearman_manhattan
89
+ value: 0.27814879203445947
90
+ name: Spearman Manhattan
91
+ - type: pearson_euclidean
92
+ value: 0.6348761842006896
93
+ name: Pearson Euclidean
94
+ - type: spearman_euclidean
95
+ value: 0.2789361726048565
96
+ name: Spearman Euclidean
97
+ - type: pearson_dot
98
+ value: 0.5906538598201696
99
+ name: Pearson Dot
100
+ - type: spearman_dot
101
+ value: 0.2789361717424329
102
+ name: Spearman Dot
103
+ - type: pearson_max
104
+ value: 0.6348761842006896
105
+ name: Pearson Max
106
+ - type: spearman_max
107
+ value: 0.2789361726048565
108
+ name: Spearman Max
109
+ ---
110
+
111
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
112
+
113
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
114
+
115
+ ## Model Details
116
+
117
+ ### Model Description
118
+ - **Model Type:** Sentence Transformer
119
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
120
+ - **Maximum Sequence Length:** 384 tokens
121
+ - **Output Dimensionality:** 768 tokens
122
+ - **Similarity Function:** Cosine Similarity
123
+ <!-- - **Training Dataset:** Unknown -->
124
+ <!-- - **Language:** Unknown -->
125
+ <!-- - **License:** Unknown -->
126
+
127
+ ### Model Sources
128
+
129
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
130
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
131
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
132
+
133
+ ### Full Model Architecture
134
+
135
+ ```
136
+ SentenceTransformer(
137
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
138
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
139
+ (2): Normalize()
140
+ )
141
+ ```
142
+
143
+ ## Usage
144
+
145
+ ### Direct Usage (Sentence Transformers)
146
+
147
+ First install the Sentence Transformers library:
148
+
149
+ ```bash
150
+ pip install -U sentence-transformers
151
+ ```
152
+
153
+ Then you can load this model and run inference.
154
+ ```python
155
+ from sentence_transformers import SentenceTransformer
156
+
157
+ # Download from the 🤗 Hub
158
+ model = SentenceTransformer("enochlev/xlm-similarity-large")
159
+ # Run inference
160
+ sentences = [
161
+ 'Oh, okay, so just the iPhone ## only.',
162
+ "Yes, that's correct for know. Our price is £ and then it won't go down to £ after you apply the discount.",
163
+ "I'm now going to send you a one time code. The first message is a warning to not give the code to scammers pretending to work for O2. The second message is the code to continue with your request.",
164
+ ]
165
+ embeddings = model.encode(sentences)
166
+ print(embeddings.shape)
167
+ # [3, 768]
168
+
169
+ # Get the similarity scores for the embeddings
170
+ similarities = model.similarity(embeddings, embeddings)
171
+ print(similarities.shape)
172
+ # [3, 3]
173
+ ```
174
+
175
+ <!--
176
+ ### Direct Usage (Transformers)
177
+
178
+ <details><summary>Click to see the direct usage in Transformers</summary>
179
+
180
+ </details>
181
+ -->
182
+
183
+ <!--
184
+ ### Downstream Usage (Sentence Transformers)
185
+
186
+ You can finetune this model on your own dataset.
187
+
188
+ <details><summary>Click to expand</summary>
189
+
190
+ </details>
191
+ -->
192
+
193
+ <!--
194
+ ### Out-of-Scope Use
195
+
196
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
197
+ -->
198
+
199
+ ## Evaluation
200
+
201
+ ### Metrics
202
+
203
+ #### Semantic Similarity
204
+ * Dataset: `sts_dev`
205
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
206
+
207
+ | Metric | Value |
208
+ |:-------------------|:-----------|
209
+ | pearson_cosine | 0.5907 |
210
+ | spearman_cosine | 0.2789 |
211
+ | pearson_manhattan | 0.6309 |
212
+ | spearman_manhattan | 0.2781 |
213
+ | pearson_euclidean | 0.6349 |
214
+ | spearman_euclidean | 0.2789 |
215
+ | pearson_dot | 0.5907 |
216
+ | spearman_dot | 0.2789 |
217
+ | pearson_max | 0.6349 |
218
+ | **spearman_max** | **0.2789** |
219
+
220
+ <!--
221
+ ## Bias, Risks and Limitations
222
+
223
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
224
+ -->
225
+
226
+ <!--
227
+ ### Recommendations
228
+
229
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
230
+ -->
231
+
232
+ ## Training Details
233
+
234
+ ### Training Dataset
235
+
236
+ #### Unnamed Dataset
237
+
238
+
239
+ * Size: 7,960 training samples
240
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
241
+ * Approximate statistics based on the first 1000 samples:
242
+ | | text1 | text2 | label |
243
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
244
+ | type | string | string | float |
245
+ | details | <ul><li>min: 5 tokens</li><li>mean: 20.94 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 28.35 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.22</li><li>max: 1.0</li></ul> |
246
+ * Samples:
247
+ | text1 | text2 | label |
248
+ |:---------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
249
+ | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>Thank you for calling over to my name is how can I help you.</code> | <code>1.0</code> |
250
+ | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>I was about to ask us to confirm the email address that we have on the account or on your file. So what I can you tell me your email address.</code> | <code>0.2</code> |
251
+ | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>Are you planning to get a new sim only plan or a new phone?</code> | <code>0.2</code> |
252
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
253
+ ```json
254
+ {
255
+ "scale": 20.0,
256
+ "similarity_fct": "pairwise_cos_sim"
257
+ }
258
+ ```
259
+
260
+ ### Evaluation Dataset
261
+
262
+ #### Unnamed Dataset
263
+
264
+
265
+ * Size: 1,980 evaluation samples
266
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
267
+ * Approximate statistics based on the first 1000 samples:
268
+ | | text1 | text2 | label |
269
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
270
+ | type | string | string | float |
271
+ | details | <ul><li>min: 8 tokens</li><li>mean: 36.02 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 28.35 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.22</li><li>max: 1.0</li></ul> |
272
+ * Samples:
273
+ | text1 | text2 | label |
274
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
275
+ | <code>So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.</code> | <code>The same discounts you can have been added as an additional line and do into your account. It needs be entitled to % discount off of the costs.</code> | <code>1.0</code> |
276
+ | <code>So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.</code> | <code>I was about to ask us to confirm the email address that we have on the account or on your file. So what I can you tell me your email address.</code> | <code>0.2</code> |
277
+ | <code>So for example, since this is for the 2nd line bro more. So if you have any family that you want to add on your account. Yeah, we do have a same offer plan. This offer promo today.</code> | <code>Are you planning to get a new sim only plan or a new phone?</code> | <code>0.2</code> |
278
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
279
+ ```json
280
+ {
281
+ "scale": 20.0,
282
+ "similarity_fct": "pairwise_cos_sim"
283
+ }
284
+ ```
285
+
286
+ ### Training Hyperparameters
287
+ #### Non-Default Hyperparameters
288
+
289
+ - `eval_strategy`: epoch
290
+ - `per_device_train_batch_size`: 50
291
+ - `per_device_eval_batch_size`: 50
292
+ - `learning_rate`: 2e-05
293
+ - `num_train_epochs`: 1
294
+ - `warmup_ratio`: 0.1
295
+ - `batch_sampler`: no_duplicates
296
+
297
+ #### All Hyperparameters
298
+ <details><summary>Click to expand</summary>
299
+
300
+ - `overwrite_output_dir`: False
301
+ - `do_predict`: False
302
+ - `eval_strategy`: epoch
303
+ - `prediction_loss_only`: True
304
+ - `per_device_train_batch_size`: 50
305
+ - `per_device_eval_batch_size`: 50
306
+ - `per_gpu_train_batch_size`: None
307
+ - `per_gpu_eval_batch_size`: None
308
+ - `gradient_accumulation_steps`: 1
309
+ - `eval_accumulation_steps`: None
310
+ - `torch_empty_cache_steps`: None
311
+ - `learning_rate`: 2e-05
312
+ - `weight_decay`: 0.0
313
+ - `adam_beta1`: 0.9
314
+ - `adam_beta2`: 0.999
315
+ - `adam_epsilon`: 1e-08
316
+ - `max_grad_norm`: 1.0
317
+ - `num_train_epochs`: 1
318
+ - `max_steps`: -1
319
+ - `lr_scheduler_type`: linear
320
+ - `lr_scheduler_kwargs`: {}
321
+ - `warmup_ratio`: 0.1
322
+ - `warmup_steps`: 0
323
+ - `log_level`: passive
324
+ - `log_level_replica`: warning
325
+ - `log_on_each_node`: True
326
+ - `logging_nan_inf_filter`: True
327
+ - `save_safetensors`: True
328
+ - `save_on_each_node`: False
329
+ - `save_only_model`: False
330
+ - `restore_callback_states_from_checkpoint`: False
331
+ - `no_cuda`: False
332
+ - `use_cpu`: False
333
+ - `use_mps_device`: False
334
+ - `seed`: 42
335
+ - `data_seed`: None
336
+ - `jit_mode_eval`: False
337
+ - `use_ipex`: False
338
+ - `bf16`: False
339
+ - `fp16`: False
340
+ - `fp16_opt_level`: O1
341
+ - `half_precision_backend`: auto
342
+ - `bf16_full_eval`: False
343
+ - `fp16_full_eval`: False
344
+ - `tf32`: None
345
+ - `local_rank`: 0
346
+ - `ddp_backend`: None
347
+ - `tpu_num_cores`: None
348
+ - `tpu_metrics_debug`: False
349
+ - `debug`: []
350
+ - `dataloader_drop_last`: False
351
+ - `dataloader_num_workers`: 0
352
+ - `dataloader_prefetch_factor`: None
353
+ - `past_index`: -1
354
+ - `disable_tqdm`: False
355
+ - `remove_unused_columns`: True
356
+ - `label_names`: None
357
+ - `load_best_model_at_end`: False
358
+ - `ignore_data_skip`: False
359
+ - `fsdp`: []
360
+ - `fsdp_min_num_params`: 0
361
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
362
+ - `fsdp_transformer_layer_cls_to_wrap`: None
363
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
364
+ - `deepspeed`: None
365
+ - `label_smoothing_factor`: 0.0
366
+ - `optim`: adamw_torch
367
+ - `optim_args`: None
368
+ - `adafactor`: False
369
+ - `group_by_length`: False
370
+ - `length_column_name`: length
371
+ - `ddp_find_unused_parameters`: None
372
+ - `ddp_bucket_cap_mb`: None
373
+ - `ddp_broadcast_buffers`: False
374
+ - `dataloader_pin_memory`: True
375
+ - `dataloader_persistent_workers`: False
376
+ - `skip_memory_metrics`: True
377
+ - `use_legacy_prediction_loop`: False
378
+ - `push_to_hub`: False
379
+ - `resume_from_checkpoint`: None
380
+ - `hub_model_id`: None
381
+ - `hub_strategy`: every_save
382
+ - `hub_private_repo`: False
383
+ - `hub_always_push`: False
384
+ - `gradient_checkpointing`: False
385
+ - `gradient_checkpointing_kwargs`: None
386
+ - `include_inputs_for_metrics`: False
387
+ - `eval_do_concat_batches`: True
388
+ - `fp16_backend`: auto
389
+ - `push_to_hub_model_id`: None
390
+ - `push_to_hub_organization`: None
391
+ - `mp_parameters`:
392
+ - `auto_find_batch_size`: False
393
+ - `full_determinism`: False
394
+ - `torchdynamo`: None
395
+ - `ray_scope`: last
396
+ - `ddp_timeout`: 1800
397
+ - `torch_compile`: False
398
+ - `torch_compile_backend`: None
399
+ - `torch_compile_mode`: None
400
+ - `dispatch_batches`: None
401
+ - `split_batches`: None
402
+ - `include_tokens_per_second`: False
403
+ - `include_num_input_tokens_seen`: False
404
+ - `neftune_noise_alpha`: None
405
+ - `optim_target_modules`: None
406
+ - `batch_eval_metrics`: False
407
+ - `eval_on_start`: False
408
+ - `use_liger_kernel`: False
409
+ - `eval_use_gather_object`: False
410
+ - `batch_sampler`: no_duplicates
411
+ - `multi_dataset_batch_sampler`: proportional
412
+
413
+ </details>
414
+
415
+ ### Training Logs
416
+ | Epoch | Step | Validation Loss | sts_dev_spearman_max |
417
+ |:-----:|:----:|:---------------:|:--------------------:|
418
+ | 1.0 | 160 | 0.1772 | 0.2789 |
419
+
420
+
421
+ ### Framework Versions
422
+ - Python: 3.11.9
423
+ - Sentence Transformers: 3.2.1
424
+ - Transformers: 4.45.2
425
+ - PyTorch: 2.5.1+cu124
426
+ - Accelerate: 1.1.1
427
+ - Datasets: 3.1.0
428
+ - Tokenizers: 0.20.1
429
+
430
+ ## Citation
431
+
432
+ ### BibTeX
433
+
434
+ #### Sentence Transformers
435
+ ```bibtex
436
+ @inproceedings{reimers-2019-sentence-bert,
437
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
438
+ author = "Reimers, Nils and Gurevych, Iryna",
439
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
440
+ month = "11",
441
+ year = "2019",
442
+ publisher = "Association for Computational Linguistics",
443
+ url = "https://arxiv.org/abs/1908.10084",
444
+ }
445
+ ```
446
+
447
+ #### CoSENTLoss
448
+ ```bibtex
449
+ @online{kexuefm-8847,
450
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
451
+ author={Su Jianlin},
452
+ year={2022},
453
+ month={Jan},
454
+ url={https://kexue.fm/archives/8847},
455
+ }
456
+ ```
457
+
458
+ <!--
459
+ ## Glossary
460
+
461
+ *Clearly define terms in order to be accessible across audiences.*
462
+ -->
463
+
464
+ <!--
465
+ ## Model Card Authors
466
+
467
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
468
+ -->
469
+
470
+ <!--
471
+ ## Model Card Contact
472
+
473
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
474
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8537c1570e7259b967237252160fe4069cc56418bc2e138fb662e7d5c7944fdd
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff