DPO Finetuned Kukedlc/NeuTrixOmniBe-7B-model-remix using argilla/OpenHermes2.5-dpo-binarized-alpha
argilla dpo binarized pairs is a dataset built on top of: https://huggingface.co/datasets/teknium/OpenHermes-2.5 using https://github.com/argilla-io/distilabel if interested.
Thx for the great data sources.
GGUF: https://huggingface.co/eren23/dpo-binarized-NeutrixOmnibe-7B-GGUF
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 76.31 |
AI2 Reasoning Challenge (25-Shot) | 72.78 |
HellaSwag (10-Shot) | 89.05 |
MMLU (5-Shot) | 64.60 |
TruthfulQA (0-shot) | 76.90 |
Winogrande (5-shot) | 85.08 |
GSM8k (5-shot) | 69.45 |
- Downloads last month
- 87
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for eren23/dpo-binarized-NeutrixOmnibe-7B
Dataset used to train eren23/dpo-binarized-NeutrixOmnibe-7B
Spaces using eren23/dpo-binarized-NeutrixOmnibe-7B 5
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard72.780
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard89.050
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.600
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard76.900
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard85.080
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard69.450