Lora sft finetuned version of Qwen/Qwen1.5-1.8B-Chat
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
config = PeftConfig.from_pretrained("eren23/finetune_test_qwen15-1-8b-sft")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-1.8B-Chat")
model = PeftModel.from_pretrained(model, "eren23/finetune_test_qwen15-1-8b-sft")
model = model.to("cuda")
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
# make prediction
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-1.8B-Chat")
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Framework versions
- PEFT 0.8.2
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 43.27 |
AI2 Reasoning Challenge (25-Shot) | 36.18 |
HellaSwag (10-Shot) | 57.77 |
MMLU (5-Shot) | 44.96 |
TruthfulQA (0-shot) | 38.00 |
Winogrande (5-shot) | 61.17 |
GSM8k (5-shot) | 21.53 |
- Downloads last month
- 14
Model tree for eren23/finetune_test_qwen15-1-8b-sft-lora
Base model
Qwen/Qwen1.5-1.8B-ChatEvaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard36.180
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard57.770
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard44.960
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard38.000
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard61.170
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard21.530