metadata
language:
- en
license: cc-by-nc-4.0
library_name: diffusers
tags:
- merge
- mergekit
- lazymergekit
- mlabonne/Monarch-7B
- paulml/OGNO-7B
- bardsai/jaskier-7b-dpo-v5.6
base_model:
- mlabonne/Monarch-7B
- paulml/OGNO-7B
- bardsai/jaskier-7b-dpo-v5.6
model-index:
- name: ogno-monarch-jaskier-merge-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.04
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/ogno-monarch-jaskier-merge-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.09
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/ogno-monarch-jaskier-merge-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.78
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/ogno-monarch-jaskier-merge-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 77.44
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/ogno-monarch-jaskier-merge-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.77
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/ogno-monarch-jaskier-merge-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/ogno-monarch-jaskier-merge-7b
name: Open LLM Leaderboard
DPO Fine-tuned version
I DPO finetuned this model later to obtain a slightly better model (open llm leaderboard benchmark performance) https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO
ogno-monarch-jaskier-merge-7b
ogno-monarch-jaskier-merge-7b is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: eren23/dpo-binarized-NeutrixOmnibe-7B
# No parameters necessary for base model
- model: mlabonne/Monarch-7B
#Emphasize the beginning of Vicuna format models
parameters:
weight: 0.6
density: 0.59
- model: paulml/OGNO-7B
parameters:
weight: 0.1
density: 0.55
# Vicuna format
- model: bardsai/jaskier-7b-dpo-v5.6
parameters:
weight: 0.3
density: 0.55
merge_method: dare_ties
base_model: eren23/dpo-binarized-NeutrixOmnibe-7B
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "eren23/ogno-monarch-jaskier-merge-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
GGUF Version: https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-GGUF
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 76.43 |
AI2 Reasoning Challenge (25-Shot) | 73.04 |
HellaSwag (10-Shot) | 89.09 |
MMLU (5-Shot) | 64.78 |
TruthfulQA (0-shot) | 77.44 |
Winogrande (5-shot) | 84.77 |
GSM8k (5-shot) | 69.45 |