Update README.md
Browse files
README.md
CHANGED
@@ -1,53 +1,28 @@
|
|
1 |
erfan226/persian-t5-paraphraser
|
2 |
|
3 |
-
This is a
|
4 |
-
language:
|
5 |
-
- {fa}
|
6 |
-
# Usage (Sentence-Transformers)
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
pip install -U sentence-transformers
|
11 |
-
Then you can use the model like this:
|
12 |
-
|
13 |
-
from sentence_transformers import SentenceTransformer
|
14 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
15 |
-
|
16 |
-
model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
17 |
-
embeddings = model.encode(sentences)
|
18 |
-
print(embeddings)
|
19 |
-
Usage (HuggingFace Transformers)
|
20 |
-
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
21 |
-
|
22 |
-
from transformers import AutoTokenizer, AutoModel
|
23 |
-
import torch
|
24 |
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
30 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
31 |
-
|
32 |
-
|
33 |
-
# Sentences we want sentence embeddings for
|
34 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
35 |
-
|
36 |
-
# Load model from HuggingFace Hub
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
38 |
-
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
39 |
-
|
40 |
-
# Tokenize sentences
|
41 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
print(
|
|
|
|
|
52 |
|
53 |
```
|
|
|
1 |
erfan226/persian-t5-paraphraser
|
2 |
|
3 |
+
This is a paraphrasing model for the Persian language. It is based on [the monolingual T5 model for Persian](https://huggingface.co/Ahmad/parsT5-base)
|
|
|
|
|
|
|
4 |
|
5 |
+
# Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
```python
|
8 |
|
9 |
+
>>> pip install transformers
|
10 |
+
>>> from transformers import (T5ForConditionalGeneration, AutoTokenizer)
|
11 |
+
>>> import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
model_path = 'erfan226/persian-t5-paraphraser'
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
16 |
|
17 |
+
def paraphrase(text):
|
18 |
+
input = tokenizer(text, return_tensors='pt', padding=True).to(model.device)
|
19 |
+
max_size = int(input.input_ids.shape[1] * 1.5 + 10)
|
20 |
+
out = model.generate(**input, encoder_no_repeat_ngram_size=4, do_sample=False, num_beams=10, max_length=max_size, no_repeat_ngram_size=4,)
|
21 |
+
return tokenizer.decode(out[0], skip_special_tokens=True)
|
22 |
|
23 |
+
for text1, text2 in zip(x, y):
|
24 |
+
print("Original:", text1)
|
25 |
+
print("Paraphrase:", paraphrase(text1))
|
26 |
+
print("Original Paraphrase:", text2)
|
27 |
|
28 |
```
|