erickrribeiro's picture
update model card README.md
adf4c2a
metadata
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
  - generated_from_trainer
datasets:
  - glue-ptpt
metrics:
  - accuracy
  - f1
model-index:
  - name: paraphrase-bert-portuguese
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue-ptpt
          type: glue-ptpt
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8676470588235294
          - name: F1
            type: f1
            value: 0.9028776978417268

paraphrase-bert-portuguese

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the glue-ptpt dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2267
  • Accuracy: 0.8676
  • F1: 0.9029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 459 0.7241 0.8603 0.9012
0.0658 2.0 918 0.7902 0.8725 0.9071
0.1499 3.0 1377 0.7895 0.8676 0.9022
0.0654 4.0 1836 0.9841 0.8676 0.9036
0.018 5.0 2295 1.0520 0.8627 0.8989
0.0144 6.0 2754 1.1002 0.8725 0.9081
0.007 7.0 3213 1.1303 0.8652 0.9005
0.0056 8.0 3672 1.2298 0.8725 0.9081
0.0019 9.0 4131 1.2353 0.8701 0.9038
0.0001 10.0 4590 1.2267 0.8676 0.9029

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3