File size: 3,106 Bytes
d81c1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b31ac3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
library_name: stable-baselines3
tags:
- seals/MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: seals/MountainCar-v0
      type: seals/MountainCar-v0
    metrics:
    - type: mean_reward
      value: -97.00 +/- 8.26
      name: mean_reward
      verified: false
---

# **PPO** Agent playing **seals/MountainCar-v0**
This is a trained model of a **PPO** agent playing **seals/MountainCar-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).

The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.

## Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```

```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga ernestum -f logs/
python -m rl_zoo3.enjoy --algo ppo --env seals/MountainCar-v0  -f logs/
```

If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga ernestum -f logs/
python -m rl_zoo3.enjoy --algo ppo --env seals/MountainCar-v0  -f logs/
```

## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo ppo --env seals/MountainCar-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env seals/MountainCar-v0 -f logs/ -orga ernestum
```

## Hyperparameters
```python
OrderedDict([('batch_size', 512),
             ('clip_range', 0.2),
             ('ent_coef', 6.4940755116195606e-06),
             ('gae_lambda', 0.98),
             ('gamma', 0.99),
             ('learning_rate', 0.0004476103728105138),
             ('max_grad_norm', 1),
             ('n_envs', 16),
             ('n_epochs', 20),
             ('n_steps', 256),
             ('n_timesteps', 1000000.0),
             ('normalize',
              {'gamma': 0.99, 'norm_obs': False, 'norm_reward': True}),
             ('policy', 'MlpPolicy'),
             ('policy_kwargs',
              {'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
               'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
               'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
             ('vf_coef', 0.25988158989488963),
             ('normalize_kwargs',
              {'norm_obs': {'gamma': 0.99,
                            'norm_obs': False,
                            'norm_reward': True},
               'norm_reward': False})])
```

# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```