ppo-seals-Ant-v0 / README.md
ernestum's picture
Initial commit
e55aacb
metadata
library_name: stable-baselines3
tags:
  - seals/Ant-v0
  - deep-reinforcement-learning
  - reinforcement-learning
  - stable-baselines3
model-index:
  - name: PPO
    results:
      - metrics:
          - type: mean_reward
            value: 3034.50 +/- 1124.70
            name: mean_reward
        task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: seals/Ant-v0
          type: seals/Ant-v0

PPO Agent playing seals/Ant-v0

This is a trained model of a PPO agent playing seals/Ant-v0 using the stable-baselines3 library and the RL Zoo.

The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.

Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Ant-v0 -orga ernestumorga -f logs/
python enjoy.py --algo ppo --env seals/Ant-v0  -f logs/

If you installed the RL Zoo3 via pip (pip install rl_zoo3), from anywhere you can do:

python -m rl_zoo3.load_from_hub --algo ppo --env seals/Ant-v0 -orga ernestumorga -f logs/
rl_zoo3 enjoy --algo ppo --env seals/Ant-v0  -f logs/

Training (with the RL Zoo)

python train.py --algo ppo --env seals/Ant-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env seals/Ant-v0 -f logs/ -orga ernestumorga

Hyperparameters

OrderedDict([('batch_size', 16),
             ('clip_range', 0.3),
             ('ent_coef', 3.1441389214159857e-06),
             ('gae_lambda', 0.8),
             ('gamma', 0.995),
             ('learning_rate', 0.00017959211641976886),
             ('max_grad_norm', 0.9),
             ('n_epochs', 10),
             ('n_steps', 2048),
             ('n_timesteps', 1000000.0),
             ('normalize',
              {'gamma': 0.995, 'norm_obs': False, 'norm_reward': True}),
             ('policy', 'MlpPolicy'),
             ('policy_kwargs',
              {'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
               'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
               'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
             ('vf_coef', 0.4351450387648799),
             ('normalize_kwargs',
              {'norm_obs': {'gamma': 0.995,
                            'norm_obs': False,
                            'norm_reward': True},
               'norm_reward': False})])