Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM-360M
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 932b975fca203429_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/932b975fca203429_train_data.json
  type:
    field_input: note
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: error577/644790cb-338f-4d72-96ed-ba76929750e2
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 1000
micro_batch_size: 2
mlflow_experiment_name: /tmp/932b975fca203429_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 192f06f0-5909-42fe-bc5f-7c55cc9d7e7c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

644790cb-338f-4d72-96ed-ba76929750e2

This model is a fine-tuned version of unsloth/SmolLM-360M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
1.4131 0.0001 1 1.3058
0.7876 0.0127 250 0.8503
0.6 0.0254 500 0.8013
0.8555 0.0381 750 0.7885
0.9364 0.0508 1000 0.7859

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for error577/644790cb-338f-4d72-96ed-ba76929750e2

Adapter
(225)
this model