Edit model card

Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

phi-3-mini-LoRA

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5586

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.7527 0.1131 250 0.6002
0.5924 0.2262 500 0.5809
0.5811 0.3393 750 0.5759
0.5827 0.4524 1000 0.5717
0.5767 0.5655 1250 0.5704
0.5711 0.6787 1500 0.5678
0.5691 0.7918 1750 0.5672
0.5635 0.9049 2000 0.5654
0.5712 1.0180 2250 0.5650
0.5611 1.1311 2500 0.5647
0.555 1.2442 2750 0.5631
0.5505 1.3573 3000 0.5628
0.5657 1.4704 3250 0.5624
0.563 1.5835 3500 0.5617
0.5577 1.6966 3750 0.5614
0.5578 1.8098 4000 0.5603
0.5552 1.9229 4250 0.5604
0.5514 2.0360 4500 0.5600
0.5473 2.1491 4750 0.5603
0.5573 2.2622 5000 0.5596
0.5423 2.3753 5250 0.5599
0.5579 2.4884 5500 0.5595
0.5403 2.6015 5750 0.5591
0.5475 2.7146 6000 0.5593
0.5477 2.8277 6250 0.5590
0.5438 2.9408 6500 0.5586

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.1
  • Pytorch 2.4.0a0+3bcc3cddb5.nv24.07
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for esawtooth/phi-3-mini-LoRA

Adapter
(285)
this model