Edit model card

2_smtg

This model is a fine-tuned version of google/flan-t5-small on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9346
  • Rouge1: 0.1982
  • Rouge2: 0.1052
  • Rougel: 0.1709
  • Rougelsum: 0.1711
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 124 2.2154 0.1881 0.0892 0.1571 0.157 18.996
No log 2.0 248 2.1455 0.2003 0.1039 0.1695 0.1696 19.0
No log 3.0 372 2.0963 0.2011 0.1043 0.1706 0.1706 19.0
No log 4.0 496 2.0696 0.2014 0.105 0.1708 0.1708 19.0
2.4198 5.0 620 2.0437 0.1991 0.1016 0.1693 0.1694 19.0
2.4198 6.0 744 2.0256 0.1983 0.1016 0.1694 0.1695 19.0
2.4198 7.0 868 2.0109 0.2003 0.1044 0.1702 0.1705 19.0
2.4198 8.0 992 1.9969 0.1981 0.1025 0.1692 0.1694 19.0
2.2056 9.0 1116 1.9849 0.1984 0.103 0.1696 0.1699 19.0
2.2056 10.0 1240 1.9738 0.1985 0.1032 0.1702 0.1704 19.0
2.2056 11.0 1364 1.9661 0.1976 0.1029 0.1694 0.1697 19.0
2.2056 12.0 1488 1.9591 0.1986 0.1038 0.1704 0.1706 19.0
2.1209 13.0 1612 1.9535 0.1994 0.1045 0.1708 0.1709 19.0
2.1209 14.0 1736 1.9486 0.1986 0.1047 0.1706 0.1708 19.0
2.1209 15.0 1860 1.9440 0.1988 0.1053 0.1709 0.1711 19.0
2.1209 16.0 1984 1.9406 0.1983 0.1057 0.1708 0.1709 19.0
2.0754 17.0 2108 1.9378 0.199 0.1062 0.1712 0.1712 19.0
2.0754 18.0 2232 1.9361 0.1986 0.1057 0.1713 0.1714 19.0
2.0754 19.0 2356 1.9348 0.1986 0.1056 0.1712 0.1713 19.0
2.0754 20.0 2480 1.9346 0.1982 0.1052 0.1709 0.1711 19.0

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.10.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train eschorn/2_smtg

Evaluation results