Model Card for Model ID
euneeei/hw-llama-2-7B-nsmc
Training Details
Training Data
ํ๊ตญ์ด๋ก ๋ ๋ค์ด๋ฒ ์ํ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์
์
๋๋ค
train dataset : 3000๊ฐ
test dataset : 1000๊ฐ
ํ์ต ๊ฒฐ๊ณผ ์ต๋ 0.87 accuracy
1. midm์ผ๋ก ์ ํ๋ 0.91 ๋์๋ @dataclassํ๋ผ๋ฏธํฐ๊ทธ๋๋ก
|
precision |
recall |
f1-score |
support |
negative |
0.81 |
0.91 |
0.85 |
492 |
positive |
0.90 |
0.79 |
0.84 |
508 |
accuracy |
|
|
0.85 |
1000 |
macro avg |
0.85 |
0.85 |
0.85 |
1000 |
weighted avg |
0.85 |
0.85 |
0.85 |
1000 |
confusion Matrix:
[[ 446, 46 ]
[106, 402]]
accuracy 0.85์ผ๋ก 0.90์ ๋ชป ๋ฏธ์ถ์ด, learning rate๋ฅผ ๋ ์กฐ์ ํ๊ธฐ๋ก ํ์ต๋๋ค. ๋ํ ์ค์ ๋ก๋ '๊ธ์ '์ธ๋ฐ '๋ถ์ '์ผ๋ก ํ๋จํ ๊ฒฝ์ฐ๊ฐ ๋๊ฒ ๋์์ต๋๋ค.
2. learning_rate 2e-4 -> 1e-4๋ก ๋ณ๊ฒฝ
|
precision |
recall |
f1-score |
support |
negative |
0.82 |
0.88 |
0.85 |
492 |
positive |
0.87 |
0.81 |
0.84 |
508 |
accuracy |
|
|
0.84 |
1000 |
macro avg |
0.84 |
0.84 |
0.84 |
1000 |
weighted avg |
0.84 |
0.84 |
0.84 |
1000 |
confusion Matrix:
[[ 431, 61 ]
[96, 412]]
ํ์ต๋ฅ ๋ณ๊ฒฝ์ ๋ณด๋ค ์ ๋ฐ์ ์ผ๋ก ์ข์์ง์ง ์์์ต๋๋ค. ๋ฐ๋ผ์ ํ์ต๋ฅ ์ ๋์ฌ๋ณด๊ธฐ๋ก ๊ฒฐ์ ํ์ต๋๋ค.
3. learning_rate 1e-4 -> 4e-4๋ก ๋ณ๊ฒฝ
learning_rate 1e-4์ ํฌ๊ฒ ๋ฌ๋ผ์ง ์ ์ด ์์์ต๋๋ค. ๊ทธ๋์ ๋ค๋ฅธ ๊ฒ์ ์กฐ์ ์ ํ๊ธฐ๋ก ํ์ต๋๋ค.
4. ๋ฐฐ์น ์ฌ์ด์ฆ๋ฅผ ์ฆ๊ฐ.
5. gradient_accumulation_steps ์ฆ๊ฐ
|
precision |
recall |
f1-score |
support |
negative |
0.85 |
0.88 |
0.87 |
492 |
positive |
0.88 |
0.85 |
0.87 |
508 |
accuracy |
|
|
0.87 |
1000 |
macro avg |
0.87 |
0.87 |
0.87 |
1000 |
weighted avg |
0.87 |
0.87 |
0.87 |
1000 |
confusion Matrix:
[[ 435, 57 ]
[77, 431]]
์ ํ๋ 0.90์ ๋๊ธฐ์ง๋ ๋ชปํ์ง๋ง, "๋ถ์ "์ ๋ง์ถ๋ ๋น์จ์ด ๋ง์์ก์ต๋๋ค.
6. weight_decay ๊ฐ์, learning_rate ์ฆ๊ฐ
weight_decay=0.03
-> weight_decay=0.01
learning_rate=4e-4
-> learning_rate=5e-4
|
precision |
recall |
f1-score |
support |
negative |
0.85 |
0.89 |
0.87 |
492 |
positive |
0.89 |
0.85 |
0.87 |
508 |
accuracy |
|
|
0.87 |
1000 |
macro avg |
0.87 |
0.87 |
0.87 |
1000 |
weighted avg |
0.87 |
0.87 |
0.87 |
1000 |
๊ฒฐ๊ณผ : 0.87, 5๋ฒ๊ณผ ๊ฑฐ์ ์ฐจ์ด๊ฐ ์์ต๋๋ค.
7. max_step ์ ํ ์์ ๊ธฐ
|
precision |
recall |
f1-score |
support |
negative |
0.86 |
0.89 |
0.87 |
492 |
positive |
0.89 |
0.86 |
0.87 |
508 |
accuracy |
|
|
0.87 |
1000 |
macro avg |
0.87 |
0.87 |
0.87 |
1000 |
weighted avg |
0.87 |
0.87 |
0.87 |
1000 |
confusion Matrix:
[[ 436, 56 ]
[70, 438]]
-### ์์ฃผ ์กฐ๊ธ์ฉ ๋ ์ ํํด์ง๊ณ ์์ผ๋, ์ ํ๋ 0.87์์ ํฐ ๋ณํ๊ฐ ์์ต๋๋ค.
**8. learning rate ๋ ์ค์ด๊ธฐ
|
precision |
recall |
f1-score |
support |
negative |
0.84 |
0.90 |
0.87 |
492 |
positive |
0.89 |
0.84 |
0.86 |
508 |
accuracy |
|
|
0.87 |
1000 |
macro avg |
0.87 |
0.87 |
0.87 |
1000 |
weighted avg |
0.87 |
0.87 |
0.87 |
1000 |
confusion Matrix:
[[ 441, 51 ]
[83, 425]]
์ด์ ๋ณด๋ค '๊ธ์ '์ ๋ ์ ๋ง์ถ์ง๋ง, '๋ถ์ '์ ๋ง์ถ๋ ๊ฒฝ์ฐ๊ฐ ์ค์ด๋ค์์ต๋๋ค.
๊ฒฐ๊ณผ์ ์ผ๋ก ์ ํ๋ 0.87์ผ๋ก ํ์ต์ ๋ง์น๊ฒ ์ต๋๋ค.
Framework versions