File size: 4,641 Bytes
35af27e 709cd9a 35af27e a24871f 35af27e a24871f 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 35af27e 709cd9a 428e242 35af27e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
library_name: peft
base_model: meta-llama/Llama-2-7b-chat-hf
---
# Model Card for Model ID
## euneeei/hw-llama-2-7B-nsmc
<!-- Provide a quick summary of what the model is/does. -->
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
- ### ํ๊ตญ์ด๋ก ๋ ๋ค์ด๋ฒ ์ํ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์
์
๋๋ค
- ## train dataset : 3000๊ฐ
- ## test dataset : 1000๊ฐ
- ## ํ์ต ๊ฒฐ๊ณผ ์ต๋ 0.87 accuracy
## **1. midm์ผ๋ก ์ ํ๋ 0.91 ๋์๋ @dataclassํ๋ผ๋ฏธํฐ๊ทธ๋๋ก**
- ### learning_rate : 2e-4
| | precision | recall | f1-score | support|
|----|----|----|-------|------|
negative| 0.81 | 0.91 | 0.85 | 492
positive | 0.90 | 0.79 | 0.84 | 508
accuracy | | | 0.85 | 1000
macro avg | 0.85 | 0.85 | 0.85 | 1000
weighted avg | 0.85 | 0.85 | 0.85 | 1000
- ### confusion Matrix:
### [[ 446, 46 ]
### [106, 402]]
- ### accuracy 0.85์ผ๋ก 0.90์ ๋ชป ๋ฏธ์ถ์ด, learning rate๋ฅผ ๋ ์กฐ์ ํ๊ธฐ๋ก ํ์ต๋๋ค. ๋ํ ์ค์ ๋ก๋ '๊ธ์ '์ธ๋ฐ '๋ถ์ '์ผ๋ก ํ๋จํ ๊ฒฝ์ฐ๊ฐ ๋๊ฒ ๋์์ต๋๋ค.
## **2. learning_rate 2e-4 -> 1e-4๋ก ๋ณ๊ฒฝ**
- ### learning_rate : 1e-4
| | precision | recall | f1-score | support|
|----|----|----|-------|------|
negative| 0.82 | 0.88 | 0.85 | 492
positive | 0.87 | 0.81 | 0.84 | 508
accuracy | | | 0.84 | 1000
macro avg | 0.84 | 0.84 | 0.84 | 1000
weighted avg | 0.84 | 0.84 | 0.84 | 1000
- ### confusion Matrix:
### [[ 431, 61 ]
### [96, 412]]
- ### ํ์ต๋ฅ ๋ณ๊ฒฝ์ ๋ณด๋ค ์ ๋ฐ์ ์ผ๋ก ์ข์์ง์ง ์์์ต๋๋ค. ๋ฐ๋ผ์ ํ์ต๋ฅ ์ ๋์ฌ๋ณด๊ธฐ๋ก ๊ฒฐ์ ํ์ต๋๋ค.
## **3. learning_rate 1e-4 -> 4e-4๋ก ๋ณ๊ฒฝ**
- ### learning_rate 1e-4์ ํฌ๊ฒ ๋ฌ๋ผ์ง ์ ์ด ์์์ต๋๋ค. ๊ทธ๋์ ๋ค๋ฅธ ๊ฒ์ ์กฐ์ ์ ํ๊ธฐ๋ก ํ์ต๋๋ค.
## **4. ๋ฐฐ์น ์ฌ์ด์ฆ๋ฅผ ์ฆ๊ฐ.**
- ### ๋ฉ๋ชจ๋ฆฌ ์ด์๋ก script_args์ seq_length = 450์ผ๋ก ์ค์์ต๋๋ค.
- ### ๊ทธ๋ฌ๋ ๊ณ์ ๋ฉ๋ชจ๋ฆฌ ๋ถ์กฑ์ผ๋ก ํ์ต ๋ถ๊ฐ
per_device_train_batch_size=1
->per_device_train_batch_size=2
per_device_eval_batch_size=1,
->per_device_eval_batch_size=2
## **5. gradient_accumulation_steps ์ฆ๊ฐ**
- ### ๋ฐฐ์น ์ฌ์ด์ฆ ์ฆ๊ฐ ๋์ gradient accumulation step ๋ณ๊ฒฝํ๊ธฐ๋ก ํจ.
- ### ๋ฉ๋ชจ๋ฆฌ ๋ถ์กฑ ์๋ฐฉ์ผ๋ก script_args์ seq_length = 450์ผ๋ก ์ค์
gradient_accumulation_steps=2,
-> gradient_accumulation_steps=4
-> gradient_accumulation_steps=8
| | precision | recall | f1-score | support|
|----|----|----|-------|------|
negative| 0.85 | 0.88 | 0.87 | 492
positive | 0.88 | 0.85 | 0.87 | 508
accuracy | | | 0.87 | 1000
macro avg | 0.87 | 0.87 | 0.87 | 1000
weighted avg | 0.87 | 0.87 | 0.87 | 1000
- ### confusion Matrix:
### [[ 435, 57 ]
### [77, 431]]
- ### ์ ํ๋ 0.90์ ๋๊ธฐ์ง๋ ๋ชปํ์ง๋ง, "๋ถ์ "์ ๋ง์ถ๋ ๋น์จ์ด ๋ง์์ก์ต๋๋ค.
## **6. weight_decay ๊ฐ์, learning_rate ์ฆ๊ฐ**
weight_decay=0.03
-> weight_decay=0.01
learning_rate=4e-4
-> learning_rate=5e-4
| | precision | recall | f1-score | support|
|----|----|----|-------|------|
negative| 0.85 | 0.89 | 0.87 | 492
positive | 0.89 | 0.85 | 0.87 | 508
accuracy | | | 0.87 | 1000
macro avg | 0.87 | 0.87 | 0.87 | 1000
weighted avg | 0.87 | 0.87 | 0.87 | 1000
- ### ๊ฒฐ๊ณผ : 0.87, 5๋ฒ๊ณผ ๊ฑฐ์ ์ฐจ์ด๊ฐ ์์ต๋๋ค.
## **7. max_step ์ ํ ์์ ๊ธฐ**
| | precision | recall | f1-score | support|
|----|----|----|-------|------|
negative| 0.86 | 0.89 | 0.87 | 492
positive | 0.89 | 0.86 | 0.87 | 508
accuracy | | | 0.87 | 1000
macro avg | 0.87 | 0.87 | 0.87 | 1000
weighted avg | 0.87 | 0.87 | 0.87 | 1000
- ### confusion Matrix:
### [[ 436, 56 ]
### [70, 438]]
-### ์์ฃผ ์กฐ๊ธ์ฉ ๋ ์ ํํด์ง๊ณ ์์ผ๋, ์ ํ๋ 0.87์์ ํฐ ๋ณํ๊ฐ ์์ต๋๋ค.
## **8. learning rate ๋ ์ค์ด๊ธฐ
| | precision | recall | f1-score | support|
|----|----|----|-------|------|
negative| 0.84 | 0.90 | 0.87 | 492
positive | 0.89 | 0.84 | 0.86 | 508
accuracy | | | 0.87 | 1000
macro avg | 0.87 | 0.87 | 0.87 | 1000
weighted avg | 0.87 | 0.87 | 0.87 | 1000
- ### confusion Matrix:
### [[ 441, 51 ]
### [83, 425]]
- ### ์ด์ ๋ณด๋ค '๊ธ์ '์ ๋ ์ ๋ง์ถ์ง๋ง, '๋ถ์ '์ ๋ง์ถ๋ ๊ฒฝ์ฐ๊ฐ ์ค์ด๋ค์์ต๋๋ค.
- ### ๊ฒฐ๊ณผ์ ์ผ๋ก ์ ํ๋ 0.87์ผ๋ก ํ์ต์ ๋ง์น๊ฒ ์ต๋๋ค.
### Framework versions
- PEFT 0.7.1 |