File size: 1,639 Bytes
f529713 25f513a 2069ec6 25f513a 7a8ac2c a422aac 25f513a 2069ec6 25f513a 2069ec6 25f513a 7a8ac2c 25f513a 7a8ac2c 25f513a 7a8ac2c 25f513a 2069ec6 e525747 25f513a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
euneeei/hw-midm-7B-nsmc
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
- νκ΅μ΄λ‘ λ λ€μ΄λ² μν 리뷰 λ°μ΄ν°μ
μ
λλ€.
- ## train dataset : 3000κ°
- ## test dataset : 1000κ°
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
learning_rate : 1e-4-> 2e-4
max_steps=500 μ€μ
warmup_steps=100 μ€μ
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
| | precision | recall | f1-score | support|
|----|----|----|-------|------|
negative| 0.87 | 0.95 | 091 | 492
positive | 0.94 | 0.87 | 0.90 | 508
accuracy | | | 0.91 | 1000
macro avg | 0.91 | 0.91 | 0.91 | 1000
weighted avg | 0.91 | 0.91 | 0.91 | 1000
- ### confusion metrics
### [[ 466, 26 ]
### [68, 440]]
[More Information Needed]
### Results
- ## **μ νλ 0.51 -> 0.91λ‘ λμμ‘μ΅λλ€**
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0 |