File size: 3,744 Bytes
40fec30
 
 
 
 
f2d23d5
 
40fec30
 
f2d23d5
 
 
 
 
 
 
 
 
 
00a9b3b
40fec30
 
 
 
 
 
 
 
f2d23d5
00a9b3b
 
40fec30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e702b
 
 
40fec30
2d5667c
 
40fec30
 
 
00a9b3b
40fec30
 
 
 
2d5667c
 
00a9b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40fec30
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
tags:
- generated_from_trainer
datasets:
- evanarlian/common_voice_11_0_id_filtered
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-113m-id
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: evanarlian/common_voice_11_0_id_filtered
      type: evanarlian/common_voice_11_0_id_filtered
    metrics:
    - name: Wer
      type: wer
      value: 0.4274974633336408
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-113m-id

This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-113m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-113m-id) on the evanarlian/common_voice_11_0_id_filtered dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4804
- Wer: 0.4275

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 30.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.2694        | 0.92  | 1000  | 2.9168          | 1.0000 |
| 2.2449        | 1.84  | 2000  | 1.5711          | 0.9901 |
| 1.2118        | 2.75  | 3000  | 1.0133          | 0.9261 |
| 0.971         | 3.67  | 4000  | 0.8860          | 0.8743 |
| 0.8472        | 4.59  | 5000  | 0.7562          | 0.8180 |
| 0.7436        | 5.51  | 6000  | 0.6800          | 0.7505 |
| 0.6603        | 6.43  | 7000  | 0.6275          | 0.7023 |
| 0.5961        | 7.35  | 8000  | 0.5913          | 0.6589 |
| 0.5458        | 8.26  | 9000  | 0.5605          | 0.6358 |
| 0.5113        | 9.18  | 10000 | 0.5346          | 0.6039 |
| 0.463         | 10.1  | 11000 | 0.5052          | 0.5689 |
| 0.4326        | 11.02 | 12000 | 0.4880          | 0.5497 |
| 0.3981        | 11.94 | 13000 | 0.4778          | 0.5357 |
| 0.3602        | 12.86 | 14000 | 0.4656          | 0.5198 |
| 0.3501        | 13.77 | 15000 | 0.4510          | 0.5085 |
| 0.3199        | 14.69 | 16000 | 0.4617          | 0.5010 |
| 0.3058        | 15.61 | 17000 | 0.4385          | 0.4880 |
| 0.2844        | 16.53 | 18000 | 0.4638          | 0.4930 |
| 0.2729        | 17.45 | 19000 | 0.4594          | 0.4783 |
| 0.2648        | 18.37 | 20000 | 0.4521          | 0.4703 |
| 0.2515        | 19.28 | 21000 | 0.4727          | 0.4627 |
| 0.2428        | 20.2  | 22000 | 0.4566          | 0.4587 |
| 0.2343        | 21.12 | 23000 | 0.4554          | 0.4545 |
| 0.2228        | 22.04 | 24000 | 0.4670          | 0.4506 |
| 0.2135        | 22.96 | 25000 | 0.4458          | 0.4446 |
| 0.2067        | 23.88 | 26000 | 0.4571          | 0.4402 |
| 0.2065        | 24.79 | 27000 | 0.4680          | 0.4359 |
| 0.1968        | 25.71 | 28000 | 0.4702          | 0.4346 |
| 0.1914        | 26.63 | 29000 | 0.4687          | 0.4320 |
| 0.182         | 27.55 | 30000 | 0.4807          | 0.4332 |
| 0.1771        | 28.47 | 31000 | 0.4824          | 0.4308 |
| 0.1728        | 29.38 | 32000 | 0.4804          | 0.4275 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.7.1
- Tokenizers 0.13.1