evanarlian's picture
update model card README.md
00a9b3b
|
raw
history blame
3.74 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - evanarlian/common_voice_11_0_id_filtered
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-113m-id
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: evanarlian/common_voice_11_0_id_filtered
          type: evanarlian/common_voice_11_0_id_filtered
        metrics:
          - name: Wer
            type: wer
            value: 0.4274974633336408

wav2vec2-xls-r-113m-id

This model is a fine-tuned version of evanarlian/distil-wav2vec2-xls-r-113m-id on the evanarlian/common_voice_11_0_id_filtered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4804
  • Wer: 0.4275

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.2694 0.92 1000 2.9168 1.0000
2.2449 1.84 2000 1.5711 0.9901
1.2118 2.75 3000 1.0133 0.9261
0.971 3.67 4000 0.8860 0.8743
0.8472 4.59 5000 0.7562 0.8180
0.7436 5.51 6000 0.6800 0.7505
0.6603 6.43 7000 0.6275 0.7023
0.5961 7.35 8000 0.5913 0.6589
0.5458 8.26 9000 0.5605 0.6358
0.5113 9.18 10000 0.5346 0.6039
0.463 10.1 11000 0.5052 0.5689
0.4326 11.02 12000 0.4880 0.5497
0.3981 11.94 13000 0.4778 0.5357
0.3602 12.86 14000 0.4656 0.5198
0.3501 13.77 15000 0.4510 0.5085
0.3199 14.69 16000 0.4617 0.5010
0.3058 15.61 17000 0.4385 0.4880
0.2844 16.53 18000 0.4638 0.4930
0.2729 17.45 19000 0.4594 0.4783
0.2648 18.37 20000 0.4521 0.4703
0.2515 19.28 21000 0.4727 0.4627
0.2428 20.2 22000 0.4566 0.4587
0.2343 21.12 23000 0.4554 0.4545
0.2228 22.04 24000 0.4670 0.4506
0.2135 22.96 25000 0.4458 0.4446
0.2067 23.88 26000 0.4571 0.4402
0.2065 24.79 27000 0.4680 0.4359
0.1968 25.71 28000 0.4702 0.4346
0.1914 26.63 29000 0.4687 0.4320
0.182 27.55 30000 0.4807 0.4332
0.1771 28.47 31000 0.4824 0.4308
0.1728 29.38 32000 0.4804 0.4275

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.7.1
  • Tokenizers 0.13.1