Edit model card

mpnet-base-articles-ner

This model is a fine-tuned version of microsoft/mpnet-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8471
  • F1: 0.7500

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1
1.8042 1.0 5 1.6278 0.0
1.5353 2.0 10 1.5332 0.0
1.499 3.0 15 1.4356 0.1781
1.343 4.0 20 1.3254 0.3789
1.2306 5.0 25 1.2572 0.5075
1.1427 6.0 30 1.1572 0.5700
1.0715 7.0 35 1.0875 0.6305
0.9679 8.0 40 1.0261 0.6667
0.9169 9.0 45 0.9924 0.6512
0.8447 10.0 50 0.9457 0.7137
0.8253 11.0 55 0.9216 0.7094
0.7493 12.0 60 0.9068 0.7303
0.7378 13.0 65 0.8896 0.7404
0.7039 14.0 70 0.8827 0.7398
0.7277 15.0 75 0.8632 0.7635
0.6758 16.0 80 0.8517 0.775
0.6642 17.0 85 0.8618 0.7449
0.6327 18.0 90 0.8522 0.7490
0.6238 19.0 95 0.8477 0.7500
0.6101 20.0 100 0.8471 0.7500

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0+cu117
  • Datasets 2.6.1
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.