|
--- |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
# SONAR |
|
[[Paper]](https://fb.workplace.com/groups/831302610278251/permalink/9713798772028546) (TODO: change for external link once published) |
|
[[Demo]](#usage) |
|
|
|
We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders. It substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. |
|
|
|
Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. We also provide a single text decoder, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. |
|
|
|
*SONAR* stands for **S**entence-level multim**O**dal and la**N**guage-**A**gnostic **R**epresentations |
|
|
|
The full list of supported languages (along with download links) can be found here [below](#supported-languages-and-download-links). |
|
|
|
|
|
## Installing |
|
SONAR depends mainly on [Fairseq2](https://github.com/fairinternal/fairseq2) and can be installed using (tested with `python=3.8`) |
|
```bash |
|
pip install --upgrade pip |
|
pip config set global.extra-index-url https://test.pypi.org/simple/ |
|
pip install -e . |
|
``` |
|
|
|
## Usage |
|
fairseq2 will automatically download models into your `$TORCH_HOME/hub` directory upon using the commands below. |
|
|
|
### Compute text sentence embeddings with SONAR: |
|
```python |
|
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline |
|
t2vec_model = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", |
|
tokenizer="text_sonar_basic_encoder") |
|
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.'] |
|
t2vec_model.predict(sentences, source_lang="eng_Latn").shape |
|
# torch.Size([2, 1024]) |
|
``` |
|
|
|
### Translate text with SONAR |
|
```python |
|
from sonar.inference_pipelines.text import TextToTextModelPipeline |
|
t2t_model = TextToTextModelPipeline(encoder="text_sonar_basic_encoder", |
|
decoder="text_sonar_basic_decoder", |
|
tokenizer="text_sonar_basic_encoder") # tokenizer is attached to both encoder and decoder cards |
|
|
|
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.'] |
|
t2t_model.predict(sentences, source_lang="eng_Latn", target_lang="fra_Latn") |
|
# ['Mon nom est SONAR.', "Je peux intégrer les phrases dans l'espace vectoriel."] |
|
``` |
|
|
|
### Compute speech sentence embeddings with SONAR |
|
```python |
|
from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline |
|
s2vec_model = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng") |
|
|
|
s2vec_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav", |
|
"./tests/integration_tests/data/audio_files/audio_2.wav"]).shape |
|
# torch.Size([2, 1024]) |
|
import torchaudio |
|
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav") |
|
assert sr == 16000, "Sample rate should be 16kHz" |
|
|
|
s2vec_model.predict([inp]).shape |
|
# torch.Size([1, 1024]) |
|
``` |
|
|
|
### Speech-to-text translation with SONAR |
|
```python |
|
from sonar.inference_pipelines.speech import SpeechToTextModelPipeline |
|
|
|
s2t_model = SpeechToTextModelPipeline(encoder="sonar_speech_encoder_eng", |
|
decoder="text_sonar_basic_decoder", |
|
tokenizer="text_sonar_basic_decoder") |
|
|
|
import torchaudio |
|
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav") |
|
assert sr == 16000, "Sample rate should be 16kHz" |
|
|
|
# passing loaded audio files |
|
s2t_model.predict([inp], target_lang="eng_Latn") |
|
# ['Television reports show white smoke coming from the plant.'] |
|
|
|
# passing multiple wav files |
|
s2t_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav", |
|
"./tests/integration_tests/data/audio_files/audio_2.wav"], target_lang="eng_Latn") |
|
# ['Television reports show white smoke coming from the plant.', |
|
# 'These couples may choose to make an adoption plan for their baby.'] |
|
``` |
|
|
|
|
|
### Predicting [cross-lingual semantic similarity](https://github.com/facebookresearch/fairseq/tree/nllb/examples/nllb/human_XSTS_eval) with BLASER 2 models |
|
```Python |
|
import torch |
|
from sonar.models.blaser.loader import load_blaser_model |
|
|
|
blaser_ref = load_blaser_model("blaser_st2st_ref_v2_0").eval() |
|
blaser_qe = load_blaser_model("blaser_st2st_qe_v2_0").eval() |
|
# BLASER-2 is supposed to work with SONAR speech and text embeddings, |
|
# but we didn't include their extraction in this snippet, to keep it simple. |
|
emb = torch.ones([1, 1024]) |
|
print(blaser_ref(src=emb, ref=emb, mt=emb).item()) # 5.2552 |
|
print(blaser_qe(src=emb, mt=emb).item()) # 4.9819 |
|
``` |
|
|
|
See more complete demo notebooks : |
|
|
|
* [sonar text2text similarity and translation](examples/sonar_text_demo.ipynb) |
|
* [sonar speech2text and other data pipeline examples](examples/inference_pipelines.ipynb) |
|
|
|
|
|
## Model details |
|
|
|
- **Developed by:** Paul-Ambroise Duquenne et al. |
|
- **License:** CC-BY-NC 4.0 license |
|
- **Cite as:** |
|
|
|
@article{Duquenne:2023:sonar_arxiv, |
|
author = {Paul-Ambroise Duquenne and Holger Schwenk and Benoit Sagot}, |
|
title = {{SONAR:} Sentence-Level Multimodal and Language-Agnostic Representations}, |
|
publisher = {arXiv}, |
|
year = {2023}, |
|
url = {https://arxiv.org/abs/unk}, |
|
} |
|
|