SONAR / README.md
alexmourachko
update readme to match github
a0f0e17
|
raw
history blame
5.46 kB
---
license: cc-by-nc-4.0
---
# SONAR
[[Paper]](https://fb.workplace.com/groups/831302610278251/permalink/9713798772028546) (TODO: change for external link once published)
[[Demo]](#usage)
We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders. It substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks.
Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. We also provide a single text decoder, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations.
*SONAR* stands for **S**entence-level multim**O**dal and la**N**guage-**A**gnostic **R**epresentations
The full list of supported languages (along with download links) can be found here [below](#supported-languages-and-download-links).
## Installing
SONAR depends mainly on [Fairseq2](https://github.com/fairinternal/fairseq2) and can be installed using (tested with `python=3.8`)
```bash
pip install --upgrade pip
pip config set global.extra-index-url https://test.pypi.org/simple/
pip install -e .
```
## Usage
fairseq2 will automatically download models into your `$TORCH_HOME/hub` directory upon using the commands below.
### Compute text sentence embeddings with SONAR:
```python
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
t2vec_model = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder",
tokenizer="text_sonar_basic_encoder")
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
t2vec_model.predict(sentences, source_lang="eng_Latn").shape
# torch.Size([2, 1024])
```
### Translate text with SONAR
```python
from sonar.inference_pipelines.text import TextToTextModelPipeline
t2t_model = TextToTextModelPipeline(encoder="text_sonar_basic_encoder",
decoder="text_sonar_basic_decoder",
tokenizer="text_sonar_basic_encoder") # tokenizer is attached to both encoder and decoder cards
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
t2t_model.predict(sentences, source_lang="eng_Latn", target_lang="fra_Latn")
# ['Mon nom est SONAR.', "Je peux intégrer les phrases dans l'espace vectoriel."]
```
### Compute speech sentence embeddings with SONAR
```python
from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline
s2vec_model = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng")
s2vec_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
"./tests/integration_tests/data/audio_files/audio_2.wav"]).shape
# torch.Size([2, 1024])
import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"
s2vec_model.predict([inp]).shape
# torch.Size([1, 1024])
```
### Speech-to-text translation with SONAR
```python
from sonar.inference_pipelines.speech import SpeechToTextModelPipeline
s2t_model = SpeechToTextModelPipeline(encoder="sonar_speech_encoder_eng",
decoder="text_sonar_basic_decoder",
tokenizer="text_sonar_basic_decoder")
import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"
# passing loaded audio files
s2t_model.predict([inp], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.']
# passing multiple wav files
s2t_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
"./tests/integration_tests/data/audio_files/audio_2.wav"], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.',
# 'These couples may choose to make an adoption plan for their baby.']
```
### Predicting [cross-lingual semantic similarity](https://github.com/facebookresearch/fairseq/tree/nllb/examples/nllb/human_XSTS_eval) with BLASER 2 models
```Python
import torch
from sonar.models.blaser.loader import load_blaser_model
blaser_ref = load_blaser_model("blaser_st2st_ref_v2_0").eval()
blaser_qe = load_blaser_model("blaser_st2st_qe_v2_0").eval()
# BLASER-2 is supposed to work with SONAR speech and text embeddings,
# but we didn't include their extraction in this snippet, to keep it simple.
emb = torch.ones([1, 1024])
print(blaser_ref(src=emb, ref=emb, mt=emb).item()) # 5.2552
print(blaser_qe(src=emb, mt=emb).item()) # 4.9819
```
See more complete demo notebooks :
* [sonar text2text similarity and translation](examples/sonar_text_demo.ipynb)
* [sonar speech2text and other data pipeline examples](examples/inference_pipelines.ipynb)
## Model details
- **Developed by:** Paul-Ambroise Duquenne et al.
- **License:** CC-BY-NC 4.0 license
- **Cite as:**
@article{Duquenne:2023:sonar_arxiv,
author = {Paul-Ambroise Duquenne and Holger Schwenk and Benoit Sagot},
title = {{SONAR:} Sentence-Level Multimodal and Language-Agnostic Representations},
publisher = {arXiv},
year = {2023},
url = {https://arxiv.org/abs/unk},
}