SONAR / README.md
cointegrated's picture
update mteb results
a551c58 verified
---
license: cc-by-nc-4.0
tags:
- mteb
model-index:
- name: text_sonar_basic_encoder_normalized
results:
- task:
type: Clustering
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 18.787544117314575
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: b44c3b011063adb25877c13823db83bb193913c4
metrics:
- type: cos_sim_pearson
value: 17.97026675319667
- type: cos_sim_spearman
value: 17.63407829948615
- type: euclidean_pearson
value: 17.704571608660725
- type: euclidean_spearman
value: 17.634078298828143
- type: manhattan_pearson
value: 17.606959101509464
- type: manhattan_spearman
value: 17.549620164990085
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
metrics:
- type: cos_sim_pearson
value: 27.670887504789675
- type: cos_sim_spearman
value: 26.176629407301782
- type: euclidean_pearson
value: 28.878485717935586
- type: euclidean_spearman
value: 26.176635036613355
- type: manhattan_pearson
value: 28.782373978690103
- type: manhattan_spearman
value: 26.055266444113794
- task:
type: Classification
dataset:
type: PL-MTEB/allegro-reviews
name: MTEB AllegroReviews
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 29.62226640159046
- type: f1
value: 27.632722290701047
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 81.49253731343285
- type: ap
value: 46.61440947240349
- type: f1
value: 75.68925212232107
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (de)
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 72.02355460385438
- type: ap
value: 83.13664983282676
- type: f1
value: 70.48997817871013
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en-ext)
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 82.09145427286357
- type: ap
value: 31.45181004731995
- type: f1
value: 69.41750580313406
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (ja)
config: ja
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 71.78800856531049
- type: ap
value: 19.65443896353892
- type: f1
value: 58.436688187826334
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 62.73074999999999
- type: ap
value: 58.2839375458089
- type: f1
value: 62.16204082406629
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 31.552000000000003
- type: f1
value: 31.125328770568277
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (de)
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 34.611999999999995
- type: f1
value: 33.93738697105999
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (es)
config: es
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 35.172
- type: f1
value: 34.14112656493798
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (fr)
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 34.910000000000004
- type: f1
value: 34.276631172288965
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (ja)
config: ja
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 31.844
- type: f1
value: 31.478780923476368
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 31.912000000000003
- type: f1
value: 31.384992191831312
- task:
type: Classification
dataset:
type: DDSC/angry-tweets
name: MTEB AngryTweetsClassification
config: default
split: test
revision: 20b0e6081892e78179356fada741b7afa381443d
metrics:
- type: accuracy
value: 49.61795606494747
- type: f1
value: 48.63625944670304
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.677
- type: map_at_10
value: 14.732000000000001
- type: map_at_100
value: 15.501999999999999
- type: map_at_1000
value: 15.583
- type: map_at_3
value: 12.553
- type: map_at_5
value: 13.822999999999999
- type: mrr_at_1
value: 8.819
- type: mrr_at_10
value: 14.787
- type: mrr_at_100
value: 15.557000000000002
- type: mrr_at_1000
value: 15.638
- type: mrr_at_3
value: 12.648000000000001
- type: mrr_at_5
value: 13.879
- type: ndcg_at_1
value: 8.677
- type: ndcg_at_10
value: 18.295
- type: ndcg_at_100
value: 22.353
- type: ndcg_at_1000
value: 24.948999999999998
- type: ndcg_at_3
value: 13.789000000000001
- type: ndcg_at_5
value: 16.075
- type: precision_at_1
value: 8.677
- type: precision_at_10
value: 2.98
- type: precision_at_100
value: 0.49500000000000005
- type: precision_at_1000
value: 0.07100000000000001
- type: precision_at_3
value: 5.785
- type: precision_at_5
value: 4.58
- type: recall_at_1
value: 8.677
- type: recall_at_10
value: 29.801
- type: recall_at_100
value: 49.502
- type: recall_at_1000
value: 70.91
- type: recall_at_3
value: 17.354
- type: recall_at_5
value: 22.902
- task:
type: Retrieval
dataset:
type: arguana-pl
name: MTEB ArguAna-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.752000000000001
- type: map_at_10
value: 12.248000000000001
- type: map_at_100
value: 12.882
- type: map_at_1000
value: 12.963
- type: map_at_3
value: 10.574
- type: map_at_5
value: 11.566
- type: mrr_at_1
value: 7.824000000000001
- type: mrr_at_10
value: 12.293
- type: mrr_at_100
value: 12.928
- type: mrr_at_1000
value: 13.008000000000001
- type: mrr_at_3
value: 10.586
- type: mrr_at_5
value: 11.599
- type: ndcg_at_1
value: 7.752000000000001
- type: ndcg_at_10
value: 15.035000000000002
- type: ndcg_at_100
value: 18.497
- type: ndcg_at_1000
value: 20.896
- type: ndcg_at_3
value: 11.578
- type: ndcg_at_5
value: 13.38
- type: precision_at_1
value: 7.752000000000001
- type: precision_at_10
value: 2.404
- type: precision_at_100
value: 0.411
- type: precision_at_1000
value: 0.061
- type: precision_at_3
value: 4.836
- type: precision_at_5
value: 3.784
- type: recall_at_1
value: 7.752000000000001
- type: recall_at_10
value: 24.04
- type: recall_at_100
value: 41.11
- type: recall_at_1000
value: 60.597
- type: recall_at_3
value: 14.509
- type: recall_at_5
value: 18.919
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 26.81177290816682
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 24.346811178757022
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 50.88606427049027
- type: mrr
value: 65.13004001231148
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 77.15058512395619
- type: cos_sim_spearman
value: 79.10541692841936
- type: euclidean_pearson
value: 75.30525535929353
- type: euclidean_spearman
value: 79.10541692841936
- type: manhattan_pearson
value: 75.33508042552984
- type: manhattan_spearman
value: 78.84577245802708
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
metrics:
- type: cos_sim_pearson
value: 37.84739189558895
- type: cos_sim_spearman
value: 37.662710610486265
- type: euclidean_pearson
value: 37.5407537185213
- type: euclidean_spearman
value: 37.66272446700578
- type: manhattan_pearson
value: 37.863820146709706
- type: manhattan_spearman
value: 38.09120266204032
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (de-en)
config: de-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.97703549060543
- type: f1
value: 98.82393876130828
- type: precision
value: 98.74913013221992
- type: recall
value: 98.97703549060543
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (fr-en)
config: fr-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.34910851860005
- type: f1
value: 98.09487123046446
- type: precision
value: 97.97032063981217
- type: recall
value: 98.34910851860005
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (ru-en)
config: ru-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 97.60304814686526
- type: f1
value: 97.36520032328832
- type: precision
value: 97.24743101258517
- type: recall
value: 97.60304814686526
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (zh-en)
config: zh-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.78883622959452
- type: f1
value: 98.71862383710724
- type: precision
value: 98.68351764086361
- type: recall
value: 98.78883622959452
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 73.49675324675324
- type: f1
value: 72.88538992490979
- task:
type: Clustering
dataset:
type: jinaai/big-patent-clustering
name: MTEB BigPatentClustering
config: default
split: test
revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
metrics:
- type: v_measure
value: 6.801245618724224
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 20.6156033971932
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 19.077587707743156
- task:
type: Clustering
dataset:
type: slvnwhrl/blurbs-clustering-p2p
name: MTEB BlurbsClusteringP2P
config: default
split: test
revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
metrics:
- type: v_measure
value: 27.00349462858046
- task:
type: Clustering
dataset:
type: slvnwhrl/blurbs-clustering-s2s
name: MTEB BlurbsClusteringS2S
config: default
split: test
revision: 9bfff9a7f8f6dc6ffc9da71c48dd48b68696471d
metrics:
- type: v_measure
value: 14.845348131791589
- task:
type: BitextMining
dataset:
type: strombergnlp/bornholmsk_parallel
name: MTEB BornholmBitextMining
config: default
split: test
revision: 3bc5cfb4ec514264fe2db5615fac9016f7251552
metrics:
- type: accuracy
value: 54.0
- type: f1
value: 47.37026862026861
- type: precision
value: 45.0734126984127
- type: recall
value: 54.0
- task:
type: Classification
dataset:
type: PL-MTEB/cbd
name: MTEB CBD
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 63.83000000000001
- type: ap
value: 18.511972946438764
- type: f1
value: 53.16787370496645
- task:
type: PairClassification
dataset:
type: PL-MTEB/cdsce-pairclassification
name: MTEB CDSC-E
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 84.39999999999999
- type: cos_sim_ap
value: 59.968589741258036
- type: cos_sim_f1
value: 54.90909090909091
- type: cos_sim_precision
value: 41.94444444444444
- type: cos_sim_recall
value: 79.47368421052632
- type: dot_accuracy
value: 84.39999999999999
- type: dot_ap
value: 59.968589741258036
- type: dot_f1
value: 54.90909090909091
- type: dot_precision
value: 41.94444444444444
- type: dot_recall
value: 79.47368421052632
- type: euclidean_accuracy
value: 84.39999999999999
- type: euclidean_ap
value: 59.968589741258036
- type: euclidean_f1
value: 54.90909090909091
- type: euclidean_precision
value: 41.94444444444444
- type: euclidean_recall
value: 79.47368421052632
- type: manhattan_accuracy
value: 84.39999999999999
- type: manhattan_ap
value: 60.094893481041154
- type: manhattan_f1
value: 55.452865064695004
- type: manhattan_precision
value: 42.73504273504273
- type: manhattan_recall
value: 78.94736842105263
- type: max_accuracy
value: 84.39999999999999
- type: max_ap
value: 60.094893481041154
- type: max_f1
value: 55.452865064695004
- task:
type: STS
dataset:
type: PL-MTEB/cdscr-sts
name: MTEB CDSC-R
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 83.8427417206754
- type: cos_sim_spearman
value: 85.76946319798301
- type: euclidean_pearson
value: 79.43901249477852
- type: euclidean_spearman
value: 85.76946319798301
- type: manhattan_pearson
value: 79.81046681362531
- type: manhattan_spearman
value: 86.24115514951988
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
metrics:
- type: v_measure
value: 27.432031859995952
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
metrics:
- type: v_measure
value: 28.32367305628197
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
metrics:
- type: map
value: 34.30720667137015
- type: mrr
value: 40.24416666666666
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
metrics:
- type: map
value: 35.87700379259406
- type: mrr
value: 40.80206349206349
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.655000000000001
- type: map_at_10
value: 11.681999999999999
- type: map_at_100
value: 12.464
- type: map_at_1000
value: 12.603
- type: map_at_3
value: 10.514
- type: map_at_5
value: 11.083
- type: mrr_at_1
value: 10.157
- type: mrr_at_10
value: 14.773
- type: mrr_at_100
value: 15.581999999999999
- type: mrr_at_1000
value: 15.68
- type: mrr_at_3
value: 13.519
- type: mrr_at_5
value: 14.049
- type: ndcg_at_1
value: 10.157
- type: ndcg_at_10
value: 14.527999999999999
- type: ndcg_at_100
value: 18.695999999999998
- type: ndcg_at_1000
value: 22.709
- type: ndcg_at_3
value: 12.458
- type: ndcg_at_5
value: 13.152
- type: precision_at_1
value: 10.157
- type: precision_at_10
value: 2.976
- type: precision_at_100
value: 0.634
- type: precision_at_1000
value: 0.131
- type: precision_at_3
value: 6.152
- type: precision_at_5
value: 4.378
- type: recall_at_1
value: 7.655000000000001
- type: recall_at_10
value: 20.105
- type: recall_at_100
value: 39.181
- type: recall_at_1000
value: 68.06400000000001
- type: recall_at_3
value: 14.033000000000001
- type: recall_at_5
value: 16.209
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.2329999999999997
- type: map_at_10
value: 5.378
- type: map_at_100
value: 5.774
- type: map_at_1000
value: 5.863
- type: map_at_3
value: 4.598
- type: map_at_5
value: 4.9750000000000005
- type: mrr_at_1
value: 4.076
- type: mrr_at_10
value: 6.679
- type: mrr_at_100
value: 7.151000000000001
- type: mrr_at_1000
value: 7.24
- type: mrr_at_3
value: 5.722
- type: mrr_at_5
value: 6.2059999999999995
- type: ndcg_at_1
value: 4.076
- type: ndcg_at_10
value: 6.994
- type: ndcg_at_100
value: 9.366
- type: ndcg_at_1000
value: 12.181000000000001
- type: ndcg_at_3
value: 5.356000000000001
- type: ndcg_at_5
value: 6.008
- type: precision_at_1
value: 4.076
- type: precision_at_10
value: 1.459
- type: precision_at_100
value: 0.334
- type: precision_at_1000
value: 0.075
- type: precision_at_3
value: 2.718
- type: precision_at_5
value: 2.089
- type: recall_at_1
value: 3.2329999999999997
- type: recall_at_10
value: 10.749
- type: recall_at_100
value: 21.776
- type: recall_at_1000
value: 42.278999999999996
- type: recall_at_3
value: 6.146999999999999
- type: recall_at_5
value: 7.779999999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.036
- type: map_at_10
value: 12.727
- type: map_at_100
value: 13.532
- type: map_at_1000
value: 13.653
- type: map_at_3
value: 11.15
- type: map_at_5
value: 11.965
- type: mrr_at_1
value: 9.404
- type: mrr_at_10
value: 14.493
- type: mrr_at_100
value: 15.274
- type: mrr_at_1000
value: 15.370000000000001
- type: mrr_at_3
value: 12.853
- type: mrr_at_5
value: 13.696
- type: ndcg_at_1
value: 9.404
- type: ndcg_at_10
value: 15.784
- type: ndcg_at_100
value: 20.104
- type: ndcg_at_1000
value: 23.357
- type: ndcg_at_3
value: 12.61
- type: ndcg_at_5
value: 13.988
- type: precision_at_1
value: 9.404
- type: precision_at_10
value: 2.947
- type: precision_at_100
value: 0.562
- type: precision_at_1000
value: 0.093
- type: precision_at_3
value: 6.04
- type: precision_at_5
value: 4.4639999999999995
- type: recall_at_1
value: 8.036
- type: recall_at_10
value: 23.429
- type: recall_at_100
value: 43.728
- type: recall_at_1000
value: 68.10000000000001
- type: recall_at_3
value: 14.99
- type: recall_at_5
value: 18.274
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.653
- type: map_at_10
value: 5.941
- type: map_at_100
value: 6.512
- type: map_at_1000
value: 6.6129999999999995
- type: map_at_3
value: 5.2540000000000004
- type: map_at_5
value: 5.645
- type: mrr_at_1
value: 3.955
- type: mrr_at_10
value: 6.4079999999999995
- type: mrr_at_100
value: 7.005999999999999
- type: mrr_at_1000
value: 7.105
- type: mrr_at_3
value: 5.593
- type: mrr_at_5
value: 6.051
- type: ndcg_at_1
value: 3.955
- type: ndcg_at_10
value: 7.342
- type: ndcg_at_100
value: 10.543
- type: ndcg_at_1000
value: 14.011000000000001
- type: ndcg_at_3
value: 5.853
- type: ndcg_at_5
value: 6.586
- type: precision_at_1
value: 3.955
- type: precision_at_10
value: 1.266
- type: precision_at_100
value: 0.315
- type: precision_at_1000
value: 0.066
- type: precision_at_3
value: 2.5989999999999998
- type: precision_at_5
value: 1.966
- type: recall_at_1
value: 3.653
- type: recall_at_10
value: 11.232000000000001
- type: recall_at_100
value: 26.625
- type: recall_at_1000
value: 54.476
- type: recall_at_3
value: 7.269
- type: recall_at_5
value: 8.982999999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.257
- type: map_at_10
value: 3.881
- type: map_at_100
value: 4.279
- type: map_at_1000
value: 4.417
- type: map_at_3
value: 3.4070000000000005
- type: map_at_5
value: 3.744
- type: mrr_at_1
value: 2.9850000000000003
- type: mrr_at_10
value: 4.756
- type: mrr_at_100
value: 5.228
- type: mrr_at_1000
value: 5.354
- type: mrr_at_3
value: 4.125
- type: mrr_at_5
value: 4.567
- type: ndcg_at_1
value: 2.9850000000000003
- type: ndcg_at_10
value: 4.936999999999999
- type: ndcg_at_100
value: 7.664
- type: ndcg_at_1000
value: 12.045
- type: ndcg_at_3
value: 3.956
- type: ndcg_at_5
value: 4.584
- type: precision_at_1
value: 2.9850000000000003
- type: precision_at_10
value: 0.9329999999999999
- type: precision_at_100
value: 0.29
- type: precision_at_1000
value: 0.083
- type: precision_at_3
value: 1.949
- type: precision_at_5
value: 1.567
- type: recall_at_1
value: 2.257
- type: recall_at_10
value: 7.382
- type: recall_at_100
value: 20.689
- type: recall_at_1000
value: 53.586
- type: recall_at_3
value: 4.786
- type: recall_at_5
value: 6.2829999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.691
- type: map_at_10
value: 9.447
- type: map_at_100
value: 10.174
- type: map_at_1000
value: 10.308
- type: map_at_3
value: 8.187999999999999
- type: map_at_5
value: 8.852
- type: mrr_at_1
value: 8.566
- type: mrr_at_10
value: 12.036
- type: mrr_at_100
value: 12.817
- type: mrr_at_1000
value: 12.918
- type: mrr_at_3
value: 10.539
- type: mrr_at_5
value: 11.381
- type: ndcg_at_1
value: 8.566
- type: ndcg_at_10
value: 11.95
- type: ndcg_at_100
value: 15.831000000000001
- type: ndcg_at_1000
value: 19.561
- type: ndcg_at_3
value: 9.467
- type: ndcg_at_5
value: 10.544
- type: precision_at_1
value: 8.566
- type: precision_at_10
value: 2.387
- type: precision_at_100
value: 0.538
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 4.556
- type: precision_at_5
value: 3.5029999999999997
- type: recall_at_1
value: 6.691
- type: recall_at_10
value: 17.375
- type: recall_at_100
value: 34.503
- type: recall_at_1000
value: 61.492000000000004
- type: recall_at_3
value: 10.134
- type: recall_at_5
value: 13.056999999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.68
- type: map_at_10
value: 6.776999999999999
- type: map_at_100
value: 7.207
- type: map_at_1000
value: 7.321999999999999
- type: map_at_3
value: 6.007
- type: map_at_5
value: 6.356000000000001
- type: mrr_at_1
value: 5.479
- type: mrr_at_10
value: 8.094999999999999
- type: mrr_at_100
value: 8.622
- type: mrr_at_1000
value: 8.729000000000001
- type: mrr_at_3
value: 7.249
- type: mrr_at_5
value: 7.6770000000000005
- type: ndcg_at_1
value: 5.479
- type: ndcg_at_10
value: 8.474
- type: ndcg_at_100
value: 11.134
- type: ndcg_at_1000
value: 14.759
- type: ndcg_at_3
value: 6.888
- type: ndcg_at_5
value: 7.504
- type: precision_at_1
value: 5.479
- type: precision_at_10
value: 1.575
- type: precision_at_100
value: 0.35000000000000003
- type: precision_at_1000
value: 0.08099999999999999
- type: precision_at_3
value: 3.272
- type: precision_at_5
value: 2.374
- type: recall_at_1
value: 4.68
- type: recall_at_10
value: 12.552
- type: recall_at_100
value: 24.91
- type: recall_at_1000
value: 52.019999999999996
- type: recall_at_3
value: 8.057
- type: recall_at_5
value: 9.629999999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.741750000000001
- type: map_at_10
value: 7.103916666666667
- type: map_at_100
value: 7.656499999999998
- type: map_at_1000
value: 7.767583333333332
- type: map_at_3
value: 6.262416666666668
- type: map_at_5
value: 6.693916666666667
- type: mrr_at_1
value: 5.780583333333332
- type: mrr_at_10
value: 8.576333333333332
- type: mrr_at_100
value: 9.17975
- type: mrr_at_1000
value: 9.279083333333334
- type: mrr_at_3
value: 7.608833333333333
- type: mrr_at_5
value: 8.111333333333333
- type: ndcg_at_1
value: 5.780583333333332
- type: ndcg_at_10
value: 8.866166666666668
- type: ndcg_at_100
value: 12.037083333333333
- type: ndcg_at_1000
value: 15.4555
- type: ndcg_at_3
value: 7.179083333333335
- type: ndcg_at_5
value: 7.897166666666666
- type: precision_at_1
value: 5.780583333333332
- type: precision_at_10
value: 1.6935833333333334
- type: precision_at_100
value: 0.3921666666666667
- type: precision_at_1000
value: 0.08391666666666667
- type: precision_at_3
value: 3.425416666666666
- type: precision_at_5
value: 2.5570833333333334
- type: recall_at_1
value: 4.741750000000001
- type: recall_at_10
value: 12.889083333333334
- type: recall_at_100
value: 27.81866666666667
- type: recall_at_1000
value: 53.52316666666667
- type: recall_at_3
value: 8.179333333333332
- type: recall_at_5
value: 10.004083333333334
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.7130000000000005
- type: map_at_10
value: 5.734
- type: map_at_100
value: 6.297999999999999
- type: map_at_1000
value: 6.388000000000001
- type: map_at_3
value: 5.119
- type: map_at_5
value: 5.432
- type: mrr_at_1
value: 4.9079999999999995
- type: mrr_at_10
value: 7.2940000000000005
- type: mrr_at_100
value: 7.8549999999999995
- type: mrr_at_1000
value: 7.95
- type: mrr_at_3
value: 6.621
- type: mrr_at_5
value: 6.950000000000001
- type: ndcg_at_1
value: 4.9079999999999995
- type: ndcg_at_10
value: 7.167999999999999
- type: ndcg_at_100
value: 10.436
- type: ndcg_at_1000
value: 13.370999999999999
- type: ndcg_at_3
value: 5.959
- type: ndcg_at_5
value: 6.481000000000001
- type: precision_at_1
value: 4.9079999999999995
- type: precision_at_10
value: 1.3339999999999999
- type: precision_at_100
value: 0.33899999999999997
- type: precision_at_1000
value: 0.065
- type: precision_at_3
value: 2.965
- type: precision_at_5
value: 2.117
- type: recall_at_1
value: 3.7130000000000005
- type: recall_at_10
value: 10.156
- type: recall_at_100
value: 25.955000000000002
- type: recall_at_1000
value: 48.891
- type: recall_at_3
value: 6.795
- type: recall_at_5
value: 8.187999999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.114
- type: map_at_10
value: 3.4290000000000003
- type: map_at_100
value: 3.789
- type: map_at_1000
value: 3.878
- type: map_at_3
value: 2.9139999999999997
- type: map_at_5
value: 3.148
- type: mrr_at_1
value: 2.65
- type: mrr_at_10
value: 4.252000000000001
- type: mrr_at_100
value: 4.689
- type: mrr_at_1000
value: 4.782
- type: mrr_at_3
value: 3.671
- type: mrr_at_5
value: 3.9370000000000003
- type: ndcg_at_1
value: 2.65
- type: ndcg_at_10
value: 4.47
- type: ndcg_at_100
value: 6.654
- type: ndcg_at_1000
value: 9.713
- type: ndcg_at_3
value: 3.424
- type: ndcg_at_5
value: 3.794
- type: precision_at_1
value: 2.65
- type: precision_at_10
value: 0.9119999999999999
- type: precision_at_100
value: 0.248
- type: precision_at_1000
value: 0.063
- type: precision_at_3
value: 1.7209999999999999
- type: precision_at_5
value: 1.287
- type: recall_at_1
value: 2.114
- type: recall_at_10
value: 6.927
- type: recall_at_100
value: 17.26
- type: recall_at_1000
value: 40.672999999999995
- type: recall_at_3
value: 3.8859999999999997
- type: recall_at_5
value: 4.861
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.055
- type: map_at_10
value: 7.704999999999999
- type: map_at_100
value: 8.169
- type: map_at_1000
value: 8.257
- type: map_at_3
value: 7.033
- type: map_at_5
value: 7.4079999999999995
- type: mrr_at_1
value: 6.81
- type: mrr_at_10
value: 8.955
- type: mrr_at_100
value: 9.497
- type: mrr_at_1000
value: 9.583
- type: mrr_at_3
value: 8.116
- type: mrr_at_5
value: 8.526
- type: ndcg_at_1
value: 6.81
- type: ndcg_at_10
value: 9.113
- type: ndcg_at_100
value: 11.884
- type: ndcg_at_1000
value: 14.762
- type: ndcg_at_3
value: 7.675999999999999
- type: ndcg_at_5
value: 8.325000000000001
- type: precision_at_1
value: 6.81
- type: precision_at_10
value: 1.558
- type: precision_at_100
value: 0.34299999999999997
- type: precision_at_1000
value: 0.068
- type: precision_at_3
value: 3.2960000000000003
- type: precision_at_5
value: 2.388
- type: recall_at_1
value: 6.055
- type: recall_at_10
value: 12.219
- type: recall_at_100
value: 25.304
- type: recall_at_1000
value: 47.204
- type: recall_at_3
value: 8.387
- type: recall_at_5
value: 9.991
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.043
- type: map_at_10
value: 7.394
- type: map_at_100
value: 8.096
- type: map_at_1000
value: 8.243
- type: map_at_3
value: 6.300999999999999
- type: map_at_5
value: 6.7780000000000005
- type: mrr_at_1
value: 6.126
- type: mrr_at_10
value: 9.308
- type: mrr_at_100
value: 10.091
- type: mrr_at_1000
value: 10.206
- type: mrr_at_3
value: 7.938000000000001
- type: mrr_at_5
value: 8.64
- type: ndcg_at_1
value: 6.126
- type: ndcg_at_10
value: 9.474
- type: ndcg_at_100
value: 13.238
- type: ndcg_at_1000
value: 17.366
- type: ndcg_at_3
value: 7.3260000000000005
- type: ndcg_at_5
value: 8.167
- type: precision_at_1
value: 6.126
- type: precision_at_10
value: 1.9959999999999998
- type: precision_at_100
value: 0.494
- type: precision_at_1000
value: 0.125
- type: precision_at_3
value: 3.557
- type: precision_at_5
value: 2.9250000000000003
- type: recall_at_1
value: 5.043
- type: recall_at_10
value: 13.812
- type: recall_at_100
value: 31.375999999999998
- type: recall_at_1000
value: 61.309999999999995
- type: recall_at_3
value: 7.8020000000000005
- type: recall_at_5
value: 9.725999999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.771
- type: map_at_10
value: 5.152
- type: map_at_100
value: 5.584
- type: map_at_1000
value: 5.666
- type: map_at_3
value: 4.664
- type: map_at_5
value: 4.941
- type: mrr_at_1
value: 4.251
- type: mrr_at_10
value: 5.867
- type: mrr_at_100
value: 6.345000000000001
- type: mrr_at_1000
value: 6.432
- type: mrr_at_3
value: 5.36
- type: mrr_at_5
value: 5.656
- type: ndcg_at_1
value: 4.251
- type: ndcg_at_10
value: 6.16
- type: ndcg_at_100
value: 8.895
- type: ndcg_at_1000
value: 11.631
- type: ndcg_at_3
value: 5.176
- type: ndcg_at_5
value: 5.633
- type: precision_at_1
value: 4.251
- type: precision_at_10
value: 0.98
- type: precision_at_100
value: 0.259
- type: precision_at_1000
value: 0.053
- type: precision_at_3
value: 2.2800000000000002
- type: precision_at_5
value: 1.627
- type: recall_at_1
value: 3.771
- type: recall_at_10
value: 8.731
- type: recall_at_100
value: 22.517
- type: recall_at_1000
value: 44.183
- type: recall_at_3
value: 5.866
- type: recall_at_5
value: 7.066999999999999
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.543
- type: map_at_10
value: 1.027
- type: map_at_100
value: 1.228
- type: map_at_1000
value: 1.266
- type: map_at_3
value: 0.756
- type: map_at_5
value: 0.877
- type: mrr_at_1
value: 1.3679999999999999
- type: mrr_at_10
value: 2.474
- type: mrr_at_100
value: 2.8369999999999997
- type: mrr_at_1000
value: 2.894
- type: mrr_at_3
value: 1.8780000000000001
- type: mrr_at_5
value: 2.1319999999999997
- type: ndcg_at_1
value: 1.3679999999999999
- type: ndcg_at_10
value: 1.791
- type: ndcg_at_100
value: 3.06
- type: ndcg_at_1000
value: 4.501
- type: ndcg_at_3
value: 1.16
- type: ndcg_at_5
value: 1.3419999999999999
- type: precision_at_1
value: 1.3679999999999999
- type: precision_at_10
value: 0.697
- type: precision_at_100
value: 0.193
- type: precision_at_1000
value: 0.045
- type: precision_at_3
value: 0.9339999999999999
- type: precision_at_5
value: 0.808
- type: recall_at_1
value: 0.543
- type: recall_at_10
value: 2.5149999999999997
- type: recall_at_100
value: 7.356999999999999
- type: recall_at_1000
value: 16.233
- type: recall_at_3
value: 1.018
- type: recall_at_5
value: 1.5150000000000001
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
metrics:
- type: map_at_1
value: 3.7289999999999996
- type: map_at_10
value: 5.524
- type: map_at_100
value: 5.984
- type: map_at_1000
value: 6.087
- type: map_at_3
value: 4.854
- type: map_at_5
value: 5.2299999999999995
- type: mrr_at_1
value: 6.177
- type: mrr_at_10
value: 8.541
- type: mrr_at_100
value: 9.073
- type: mrr_at_1000
value: 9.161
- type: mrr_at_3
value: 7.71
- type: mrr_at_5
value: 8.148
- type: ndcg_at_1
value: 6.177
- type: ndcg_at_10
value: 7.217999999999999
- type: ndcg_at_100
value: 9.927
- type: ndcg_at_1000
value: 13.062000000000001
- type: ndcg_at_3
value: 6.0569999999999995
- type: ndcg_at_5
value: 6.544999999999999
- type: precision_at_1
value: 6.177
- type: precision_at_10
value: 1.6729999999999998
- type: precision_at_100
value: 0.38999999999999996
- type: precision_at_1000
value: 0.082
- type: precision_at_3
value: 3.5090000000000003
- type: precision_at_5
value: 2.596
- type: recall_at_1
value: 3.7289999999999996
- type: recall_at_10
value: 9.501
- type: recall_at_100
value: 21.444
- type: recall_at_1000
value: 43.891999999999996
- type: recall_at_3
value: 6.053
- type: recall_at_5
value: 7.531000000000001
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
metrics:
- type: cos_sim_accuracy
value: 58.123872519543
- type: cos_sim_ap
value: 61.86046509726734
- type: cos_sim_f1
value: 68.18181818181817
- type: cos_sim_precision
value: 52.4198617221873
- type: cos_sim_recall
value: 97.49824643441664
- type: dot_accuracy
value: 58.123872519543
- type: dot_ap
value: 61.860555259802986
- type: dot_f1
value: 68.18181818181817
- type: dot_precision
value: 52.4198617221873
- type: dot_recall
value: 97.49824643441664
- type: euclidean_accuracy
value: 58.123872519543
- type: euclidean_ap
value: 61.87698627731538
- type: euclidean_f1
value: 68.18181818181817
- type: euclidean_precision
value: 52.4198617221873
- type: euclidean_recall
value: 97.49824643441664
- type: manhattan_accuracy
value: 58.123872519543
- type: manhattan_ap
value: 61.99468883207791
- type: manhattan_f1
value: 68.33675564681727
- type: manhattan_precision
value: 52.671562420866046
- type: manhattan_recall
value: 97.26443768996961
- type: max_accuracy
value: 58.123872519543
- type: max_ap
value: 61.99468883207791
- type: max_f1
value: 68.33675564681727
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: 1271c7809071a13532e05f25fb53511ffce77117
metrics:
- type: map_at_1
value: 6.428000000000001
- type: map_at_10
value: 8.883000000000001
- type: map_at_100
value: 9.549000000000001
- type: map_at_1000
value: 9.665
- type: map_at_3
value: 8.061
- type: map_at_5
value: 8.475000000000001
- type: mrr_at_1
value: 6.428000000000001
- type: mrr_at_10
value: 8.896999999999998
- type: mrr_at_100
value: 9.557
- type: mrr_at_1000
value: 9.674000000000001
- type: mrr_at_3
value: 8.061
- type: mrr_at_5
value: 8.488
- type: ndcg_at_1
value: 6.428000000000001
- type: ndcg_at_10
value: 10.382
- type: ndcg_at_100
value: 14.235999999999999
- type: ndcg_at_1000
value: 18.04
- type: ndcg_at_3
value: 8.613999999999999
- type: ndcg_at_5
value: 9.372
- type: precision_at_1
value: 6.428000000000001
- type: precision_at_10
value: 1.528
- type: precision_at_100
value: 0.349
- type: precision_at_1000
value: 0.067
- type: precision_at_3
value: 3.4070000000000005
- type: precision_at_5
value: 2.424
- type: recall_at_1
value: 6.428000000000001
- type: recall_at_10
value: 15.226999999999999
- type: recall_at_100
value: 34.694
- type: recall_at_1000
value: 66.07
- type: recall_at_3
value: 10.221
- type: recall_at_5
value: 12.065
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.541
- type: map_at_10
value: 1.1560000000000001
- type: map_at_100
value: 1.508
- type: map_at_1000
value: 1.598
- type: map_at_3
value: 0.918
- type: map_at_5
value: 0.992
- type: mrr_at_1
value: 9.5
- type: mrr_at_10
value: 13.446
- type: mrr_at_100
value: 13.935
- type: mrr_at_1000
value: 14.008999999999999
- type: mrr_at_3
value: 12.083
- type: mrr_at_5
value: 12.733
- type: ndcg_at_1
value: 5.75
- type: ndcg_at_10
value: 3.9210000000000003
- type: ndcg_at_100
value: 3.975
- type: ndcg_at_1000
value: 5.634
- type: ndcg_at_3
value: 4.87
- type: ndcg_at_5
value: 4.259
- type: precision_at_1
value: 9.5
- type: precision_at_10
value: 3.9
- type: precision_at_100
value: 1.015
- type: precision_at_1000
value: 0.297
- type: precision_at_3
value: 6.75
- type: precision_at_5
value: 5.25
- type: recall_at_1
value: 0.541
- type: recall_at_10
value: 2.228
- type: recall_at_100
value: 4.9430000000000005
- type: recall_at_1000
value: 11.661000000000001
- type: recall_at_3
value: 1.264
- type: recall_at_5
value: 1.4869999999999999
- task:
type: Classification
dataset:
type: DDSC/dkhate
name: MTEB DKHateClassification
config: default
split: test
revision: 59d12749a3c91a186063c7d729ec392fda94681c
metrics:
- type: accuracy
value: 69.96960486322187
- type: ap
value: 91.23131906690253
- type: f1
value: 57.11872970138122
- task:
type: Classification
dataset:
type: AI-Sweden/SuperLim
name: MTEB DalajClassification
config: default
split: test
revision: 7ebf0b4caa7b2ae39698a889de782c09e6f5ee56
metrics:
- type: accuracy
value: 49.75225225225225
- type: ap
value: 49.88223192425368
- type: f1
value: 49.55059044107012
- task:
type: Classification
dataset:
type: danish_political_comments
name: MTEB DanishPoliticalCommentsClassification
config: default
split: train
revision: edbb03726c04a0efab14fc8c3b8b79e4d420e5a1
metrics:
- type: accuracy
value: 37.58534554537886
- type: f1
value: 33.99440115952713
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
metrics:
- type: map_at_1
value: 0.608
- type: map_at_10
value: 0.882
- type: map_at_100
value: 0.962
- type: map_at_1000
value: 1.028
- type: map_at_3
value: 0.749
- type: map_at_5
value: 0.8240000000000001
- type: mrr_at_1
value: 2.0500000000000003
- type: mrr_at_10
value: 2.796
- type: mrr_at_100
value: 2.983
- type: mrr_at_1000
value: 3.09
- type: mrr_at_3
value: 2.483
- type: mrr_at_5
value: 2.661
- type: ndcg_at_1
value: 2.0500000000000003
- type: ndcg_at_10
value: 1.435
- type: ndcg_at_100
value: 1.991
- type: ndcg_at_1000
value: 4.961
- type: ndcg_at_3
value: 1.428
- type: ndcg_at_5
value: 1.369
- type: precision_at_1
value: 2.0500000000000003
- type: precision_at_10
value: 0.5349999999999999
- type: precision_at_100
value: 0.127
- type: precision_at_1000
value: 0.086
- type: precision_at_3
value: 1.05
- type: precision_at_5
value: 0.84
- type: recall_at_1
value: 0.608
- type: recall_at_10
value: 1.54
- type: recall_at_100
value: 3.5069999999999997
- type: recall_at_1000
value: 20.531
- type: recall_at_3
value: 0.901
- type: recall_at_5
value: 1.168
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
metrics:
- type: map_at_1
value: 3.1
- type: map_at_10
value: 4.016
- type: map_at_100
value: 4.455
- type: map_at_1000
value: 4.579
- type: map_at_3
value: 3.567
- type: map_at_5
value: 3.8019999999999996
- type: mrr_at_1
value: 3.1
- type: mrr_at_10
value: 4.016
- type: mrr_at_100
value: 4.455
- type: mrr_at_1000
value: 4.579
- type: mrr_at_3
value: 3.567
- type: mrr_at_5
value: 3.8019999999999996
- type: ndcg_at_1
value: 3.1
- type: ndcg_at_10
value: 4.684
- type: ndcg_at_100
value: 7.284
- type: ndcg_at_1000
value: 11.689
- type: ndcg_at_3
value: 3.7289999999999996
- type: ndcg_at_5
value: 4.146
- type: precision_at_1
value: 3.1
- type: precision_at_10
value: 0.69
- type: precision_at_100
value: 0.202
- type: precision_at_1000
value: 0.056999999999999995
- type: precision_at_3
value: 1.4000000000000001
- type: precision_at_5
value: 1.04
- type: recall_at_1
value: 3.1
- type: recall_at_10
value: 6.9
- type: recall_at_100
value: 20.200000000000003
- type: recall_at_1000
value: 57.3
- type: recall_at_3
value: 4.2
- type: recall_at_5
value: 5.2
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 38.285000000000004
- type: f1
value: 35.35979931355028
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.9249999999999999
- type: map_at_10
value: 1.311
- type: map_at_100
value: 1.363
- type: map_at_1000
value: 1.376
- type: map_at_3
value: 1.145
- type: map_at_5
value: 1.233
- type: mrr_at_1
value: 0.975
- type: mrr_at_10
value: 1.371
- type: mrr_at_100
value: 1.426
- type: mrr_at_1000
value: 1.439
- type: mrr_at_3
value: 1.195
- type: mrr_at_5
value: 1.286
- type: ndcg_at_1
value: 0.975
- type: ndcg_at_10
value: 1.5859999999999999
- type: ndcg_at_100
value: 1.8800000000000001
- type: ndcg_at_1000
value: 2.313
- type: ndcg_at_3
value: 1.229
- type: ndcg_at_5
value: 1.388
- type: precision_at_1
value: 0.975
- type: precision_at_10
value: 0.254
- type: precision_at_100
value: 0.041
- type: precision_at_1000
value: 0.008
- type: precision_at_3
value: 0.49
- type: precision_at_5
value: 0.375
- type: recall_at_1
value: 0.9249999999999999
- type: recall_at_10
value: 2.4250000000000003
- type: recall_at_100
value: 3.866
- type: recall_at_1000
value: 7.401000000000001
- type: recall_at_3
value: 1.4200000000000002
- type: recall_at_5
value: 1.81
- task:
type: Retrieval
dataset:
type: fiqa-pl
name: MTEB FiQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.959
- type: map_at_10
value: 1.952
- type: map_at_100
value: 2.281
- type: map_at_1000
value: 2.393
- type: map_at_3
value: 1.703
- type: map_at_5
value: 1.8319999999999999
- type: mrr_at_1
value: 2.469
- type: mrr_at_10
value: 4.547
- type: mrr_at_100
value: 5.021
- type: mrr_at_1000
value: 5.1339999999999995
- type: mrr_at_3
value: 3.884
- type: mrr_at_5
value: 4.223
- type: ndcg_at_1
value: 2.469
- type: ndcg_at_10
value: 3.098
- type: ndcg_at_100
value: 5.177
- type: ndcg_at_1000
value: 8.889
- type: ndcg_at_3
value: 2.7119999999999997
- type: ndcg_at_5
value: 2.8000000000000003
- type: precision_at_1
value: 2.469
- type: precision_at_10
value: 1.065
- type: precision_at_100
value: 0.321
- type: precision_at_1000
value: 0.095
- type: precision_at_3
value: 2.109
- type: precision_at_5
value: 1.574
- type: recall_at_1
value: 0.959
- type: recall_at_10
value: 4.075
- type: recall_at_100
value: 12.487
- type: recall_at_1000
value: 36.854
- type: recall_at_3
value: 2.632
- type: recall_at_5
value: 3.231
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.032
- type: map_at_10
value: 1.8849999999999998
- type: map_at_100
value: 2.167
- type: map_at_1000
value: 2.266
- type: map_at_3
value: 1.609
- type: map_at_5
value: 1.7680000000000002
- type: mrr_at_1
value: 2.6229999999999998
- type: mrr_at_10
value: 4.479
- type: mrr_at_100
value: 4.92
- type: mrr_at_1000
value: 5.029999999999999
- type: mrr_at_3
value: 3.7289999999999996
- type: mrr_at_5
value: 4.138
- type: ndcg_at_1
value: 2.6229999999999998
- type: ndcg_at_10
value: 3.005
- type: ndcg_at_100
value: 5.01
- type: ndcg_at_1000
value: 8.312
- type: ndcg_at_3
value: 2.548
- type: ndcg_at_5
value: 2.735
- type: precision_at_1
value: 2.6229999999999998
- type: precision_at_10
value: 1.049
- type: precision_at_100
value: 0.31
- type: precision_at_1000
value: 0.089
- type: precision_at_3
value: 1.955
- type: precision_at_5
value: 1.574
- type: recall_at_1
value: 1.032
- type: recall_at_10
value: 3.888
- type: recall_at_100
value: 12.414
- type: recall_at_1000
value: 33.823
- type: recall_at_3
value: 2.37
- type: recall_at_5
value: 3.077
- task:
type: Retrieval
dataset:
type: jinaai/ger_da_lir
name: MTEB GerDaLIR
config: default
split: test
revision: 0bb47f1d73827e96964edb84dfe552f62f4fd5eb
metrics:
- type: map_at_1
value: 0.542
- type: map_at_10
value: 0.8130000000000001
- type: map_at_100
value: 0.898
- type: map_at_1000
value: 0.9209999999999999
- type: map_at_3
value: 0.709
- type: map_at_5
value: 0.764
- type: mrr_at_1
value: 0.594
- type: mrr_at_10
value: 0.8880000000000001
- type: mrr_at_100
value: 0.9820000000000001
- type: mrr_at_1000
value: 1.008
- type: mrr_at_3
value: 0.774
- type: mrr_at_5
value: 0.832
- type: ndcg_at_1
value: 0.594
- type: ndcg_at_10
value: 1.0030000000000001
- type: ndcg_at_100
value: 1.537
- type: ndcg_at_1000
value: 2.4330000000000003
- type: ndcg_at_3
value: 0.782
- type: ndcg_at_5
value: 0.882
- type: precision_at_1
value: 0.594
- type: precision_at_10
value: 0.16999999999999998
- type: precision_at_100
value: 0.048
- type: precision_at_1000
value: 0.013
- type: precision_at_3
value: 0.33899999999999997
- type: precision_at_5
value: 0.255
- type: recall_at_1
value: 0.542
- type: recall_at_10
value: 1.533
- type: recall_at_100
value: 4.204
- type: recall_at_1000
value: 11.574
- type: recall_at_3
value: 0.932
- type: recall_at_5
value: 1.172
- task:
type: Retrieval
dataset:
type: deepset/germandpr
name: MTEB GermanDPR
config: default
split: test
revision: 5129d02422a66be600ac89cd3e8531b4f97d347d
metrics:
- type: map_at_1
value: 25.561
- type: map_at_10
value: 38.873000000000005
- type: map_at_100
value: 40.004
- type: map_at_1000
value: 40.03
- type: map_at_3
value: 34.585
- type: map_at_5
value: 36.980000000000004
- type: mrr_at_1
value: 25.463
- type: mrr_at_10
value: 38.792
- type: mrr_at_100
value: 39.922000000000004
- type: mrr_at_1000
value: 39.949
- type: mrr_at_3
value: 34.504000000000005
- type: mrr_at_5
value: 36.899
- type: ndcg_at_1
value: 25.561
- type: ndcg_at_10
value: 46.477000000000004
- type: ndcg_at_100
value: 51.751999999999995
- type: ndcg_at_1000
value: 52.366
- type: ndcg_at_3
value: 37.645
- type: ndcg_at_5
value: 41.953
- type: precision_at_1
value: 25.561
- type: precision_at_10
value: 7.083
- type: precision_at_100
value: 0.9490000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 15.512
- type: precision_at_5
value: 11.395
- type: recall_at_1
value: 25.561
- type: recall_at_10
value: 70.829
- type: recall_at_100
value: 94.92699999999999
- type: recall_at_1000
value: 99.61
- type: recall_at_3
value: 46.537
- type: recall_at_5
value: 56.976000000000006
- task:
type: Retrieval
dataset:
type: mteb/germanquad-retrieval
name: MTEB GermanQuAD-Retrieval
config: default
split: test
revision: f5c87ae5a2e7a5106606314eef45255f03151bb3
metrics:
- type: map_at_1
value: 53.539
- type: map_at_10
value: 65.144
- type: map_at_100
value: 65.627
- type: map_at_1000
value: 65.63900000000001
- type: map_at_3
value: 62.598
- type: map_at_5
value: 64.302
- type: mrr_at_1
value: 53.539
- type: mrr_at_10
value: 65.144
- type: mrr_at_100
value: 65.627
- type: mrr_at_1000
value: 65.63900000000001
- type: mrr_at_3
value: 62.598
- type: mrr_at_5
value: 64.302
- type: ndcg_at_1
value: 53.539
- type: ndcg_at_10
value: 70.602
- type: ndcg_at_100
value: 72.886
- type: ndcg_at_1000
value: 73.14500000000001
- type: ndcg_at_3
value: 65.52900000000001
- type: ndcg_at_5
value: 68.596
- type: precision_at_1
value: 53.539
- type: precision_at_10
value: 8.757
- type: precision_at_100
value: 0.9809999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 24.667
- type: precision_at_5
value: 16.289
- type: recall_at_1
value: 53.539
- type: recall_at_10
value: 87.568
- type: recall_at_100
value: 98.09400000000001
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 74.002
- type: recall_at_5
value: 81.443
- task:
type: STS
dataset:
type: jinaai/german-STSbenchmark
name: MTEB GermanSTSBenchmark
config: default
split: test
revision: e36907544d44c3a247898ed81540310442329e20
metrics:
- type: cos_sim_pearson
value: 68.82052535790737
- type: cos_sim_spearman
value: 67.9356892072251
- type: euclidean_pearson
value: 67.2308663006278
- type: euclidean_spearman
value: 67.93572522920142
- type: manhattan_pearson
value: 67.23568952733595
- type: manhattan_spearman
value: 67.91660489262797
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.813
- type: map_at_10
value: 9.49
- type: map_at_100
value: 9.959
- type: map_at_1000
value: 10.024
- type: map_at_3
value: 8.618
- type: map_at_5
value: 9.084
- type: mrr_at_1
value: 13.626
- type: mrr_at_10
value: 17.818
- type: mrr_at_100
value: 18.412
- type: mrr_at_1000
value: 18.482000000000003
- type: mrr_at_3
value: 16.506999999999998
- type: mrr_at_5
value: 17.219
- type: ndcg_at_1
value: 13.626
- type: ndcg_at_10
value: 12.959999999999999
- type: ndcg_at_100
value: 15.562999999999999
- type: ndcg_at_1000
value: 17.571
- type: ndcg_at_3
value: 10.995000000000001
- type: ndcg_at_5
value: 11.908000000000001
- type: precision_at_1
value: 13.626
- type: precision_at_10
value: 2.995
- type: precision_at_100
value: 0.51
- type: precision_at_1000
value: 0.078
- type: precision_at_3
value: 7.000000000000001
- type: precision_at_5
value: 4.926
- type: recall_at_1
value: 6.813
- type: recall_at_10
value: 14.976
- type: recall_at_100
value: 25.517
- type: recall_at_1000
value: 39.095
- type: recall_at_3
value: 10.5
- type: recall_at_5
value: 12.316
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
metrics:
- type: accuracy
value: 38.01462100808003
- type: f1
value: 26.680357453754215
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 55.7508
- type: ap
value: 53.28158993124153
- type: f1
value: 55.34571379744637
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
metrics:
- type: accuracy
value: 69.58724202626641
- type: ap
value: 30.04577466931377
- type: f1
value: 62.46921898313143
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
metrics:
- type: cos_sim_pearson
value: 48.80585861169271
- type: cos_sim_spearman
value: 50.11025991147549
- type: euclidean_pearson
value: 50.055425341198934
- type: euclidean_spearman
value: 50.11024862622995
- type: manhattan_pearson
value: 50.029980024931064
- type: manhattan_spearman
value: 50.074388245963384
- task:
type: Classification
dataset:
type: DDSC/lcc
name: MTEB LccSentimentClassification
config: default
split: test
revision: de7ba3406ee55ea2cc52a0a41408fa6aede6d3c6
metrics:
- type: accuracy
value: 54.266666666666666
- type: f1
value: 52.181931818742875
- task:
type: Reranking
dataset:
type: jinaai/miracl
name: MTEB MIRACL
config: default
split: test
revision: d28a029f35c4ff7f616df47b0edf54e6882395e6
metrics:
- type: map
value: 51.40745004398599
- type: mrr
value: 56.71940267335004
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
metrics:
- type: map
value: 5.831060174627054
- type: mrr
value: 4.019047619047618
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
metrics:
- type: map_at_1
value: 5.826
- type: map_at_10
value: 8.956999999999999
- type: map_at_100
value: 9.746
- type: map_at_1000
value: 9.873999999999999
- type: map_at_3
value: 7.757
- type: map_at_5
value: 8.373
- type: mrr_at_1
value: 6.046
- type: mrr_at_10
value: 9.251
- type: mrr_at_100
value: 10.044
- type: mrr_at_1000
value: 10.167
- type: mrr_at_3
value: 8.028
- type: mrr_at_5
value: 8.66
- type: ndcg_at_1
value: 6.046
- type: ndcg_at_10
value: 10.998
- type: ndcg_at_100
value: 15.568999999999999
- type: ndcg_at_1000
value: 19.453
- type: ndcg_at_3
value: 8.468
- type: ndcg_at_5
value: 9.582
- type: precision_at_1
value: 6.046
- type: precision_at_10
value: 1.807
- type: precision_at_100
value: 0.42500000000000004
- type: precision_at_1000
value: 0.076
- type: precision_at_3
value: 3.572
- type: precision_at_5
value: 2.702
- type: recall_at_1
value: 5.826
- type: recall_at_10
value: 17.291
- type: recall_at_100
value: 40.037
- type: recall_at_1000
value: 71.351
- type: recall_at_3
value: 10.269
- type: recall_at_5
value: 12.950000000000001
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 1.203
- type: map_at_10
value: 2.27
- type: map_at_100
value: 2.5860000000000003
- type: map_at_1000
value: 2.661
- type: map_at_3
value: 1.8159999999999998
- type: map_at_5
value: 2.037
- type: mrr_at_1
value: 1.232
- type: mrr_at_10
value: 2.338
- type: mrr_at_100
value: 2.665
- type: mrr_at_1000
value: 2.7390000000000003
- type: mrr_at_3
value: 1.87
- type: mrr_at_5
value: 2.1
- type: ndcg_at_1
value: 1.232
- type: ndcg_at_10
value: 3.005
- type: ndcg_at_100
value: 4.936
- type: ndcg_at_1000
value: 7.441000000000001
- type: ndcg_at_3
value: 2.036
- type: ndcg_at_5
value: 2.435
- type: precision_at_1
value: 1.232
- type: precision_at_10
value: 0.549
- type: precision_at_100
value: 0.158
- type: precision_at_1000
value: 0.038
- type: precision_at_3
value: 0.903
- type: precision_at_5
value: 0.739
- type: recall_at_1
value: 1.203
- type: recall_at_10
value: 5.332
- type: recall_at_100
value: 15.164
- type: recall_at_1000
value: 35.831
- type: recall_at_3
value: 2.622
- type: recall_at_5
value: 3.572
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.92476060191518
- type: f1
value: 89.30222882069823
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (de)
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.54353338968724
- type: f1
value: 88.23043644828002
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (es)
config: es
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.62374916611076
- type: f1
value: 89.68544977510335
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (fr)
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 86.18540557469466
- type: f1
value: 85.7362674669331
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (hi)
config: hi
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.41556113302258
- type: f1
value: 89.04934651990581
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (th)
config: th
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 85.89511754068715
- type: f1
value: 85.57630467968119
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 70.85043319653442
- type: f1
value: 46.0794069318026
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (de)
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 73.43195266272188
- type: f1
value: 48.08015719781981
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (es)
config: es
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 73.8425617078052
- type: f1
value: 49.37915156189611
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (fr)
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 66.75227059191982
- type: f1
value: 43.4642946741452
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (hi)
config: hi
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 69.13589100035855
- type: f1
value: 46.25935961966482
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (th)
config: th
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 68.47016274864377
- type: f1
value: 46.197113305277796
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (af)
config: af
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.14727639542704
- type: f1
value: 55.58745169431752
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (am)
config: am
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.91190316072628
- type: f1
value: 55.46589962622107
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ar)
config: ar
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.22932078009414
- type: f1
value: 53.661218041561334
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (az)
config: az
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.16543375924681
- type: f1
value: 55.16504653263189
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (bn)
config: bn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.239408204438476
- type: f1
value: 58.941991707183874
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (cy)
config: cy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 51.186953597848
- type: f1
value: 49.59432722397084
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (da)
config: da
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.030934767989244
- type: f1
value: 58.836302050830966
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (de)
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.314727639542696
- type: f1
value: 57.80700293522655
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (el)
config: el
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.20645595158037
- type: f1
value: 61.36755812840151
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.36785474108943
- type: f1
value: 61.15645935863754
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (es)
config: es
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.97108271687962
- type: f1
value: 62.07352472659557
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fa)
config: fa
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.67114996637525
- type: f1
value: 63.420170447126324
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fi)
config: fi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.864828513786144
- type: f1
value: 59.655860488861926
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fr)
config: fr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.55077336919974
- type: f1
value: 55.28215385204243
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (he)
config: he
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.453261600538
- type: f1
value: 59.991998820039186
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hi)
config: hi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.32145258910558
- type: f1
value: 58.9676667104426
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hu)
config: hu
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.905178211163424
- type: f1
value: 59.645126480791674
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hy)
config: hy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.03026227303295
- type: f1
value: 56.68905593909442
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (id)
config: id
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.28850033624749
- type: f1
value: 60.21862015326403
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (is)
config: is
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 56.0221923335575
- type: f1
value: 53.388473451598315
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (it)
config: it
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.44182918628111
- type: f1
value: 62.14806714489123
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ja)
config: ja
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.69535978480162
- type: f1
value: 62.40231098840202
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (jv)
config: jv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 52.00067249495628
- type: f1
value: 48.871263427511984
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ka)
config: ka
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 54.088769334229994
- type: f1
value: 52.68998451556
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (km)
config: km
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 43.34229993275051
- type: f1
value: 40.578510490463024
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (kn)
config: kn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.87491593813046
- type: f1
value: 55.19579071673386
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ko)
config: ko
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.69334229993275
- type: f1
value: 60.90210922623679
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (lv)
config: lv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 56.240753194351036
- type: f1
value: 54.137519761157485
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ml)
config: ml
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.81439139206457
- type: f1
value: 60.46554841337619
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (mn)
config: mn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.49361129791527
- type: f1
value: 55.12919894175168
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ms)
config: ms
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.55682582380633
- type: f1
value: 58.81763499302702
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (my)
config: my
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.3981170141224
- type: f1
value: 56.31810441546048
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (nb)
config: nb
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.89576328177538
- type: f1
value: 57.35130066022407
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (nl)
config: nl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.55951580363148
- type: f1
value: 61.50868742463585
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.86079354404842
- type: f1
value: 61.94702597578807
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pt)
config: pt
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.49024882313383
- type: f1
value: 60.796412851533454
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ro)
config: ro
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.53194351042366
- type: f1
value: 59.9167382336848
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ru)
config: ru
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.62945527908541
- type: f1
value: 59.195444230665096
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sl)
config: sl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.43308675184935
- type: f1
value: 60.605749901316145
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sq)
config: sq
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.44586415601883
- type: f1
value: 58.635066561729396
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sv)
config: sv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.86482851378615
- type: f1
value: 59.75440194153033
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sw)
config: sw
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 56.250840618695364
- type: f1
value: 54.84944007944625
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ta)
config: ta
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.747814391392076
- type: f1
value: 56.83761137925043
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (te)
config: te
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.60995292535306
- type: f1
value: 57.106776457430705
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (th)
config: th
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.421654337592464
- type: f1
value: 57.81013790437749
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (tl)
config: tl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.120376597175515
- type: f1
value: 55.27690756097837
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (tr)
config: tr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.907868190988566
- type: f1
value: 57.43015543162361
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ur)
config: ur
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.492266308002705
- type: f1
value: 56.885590563156455
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (vi)
config: vi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.477471418964356
- type: f1
value: 57.87047944039945
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.07800941492938
- type: f1
value: 59.340232908410265
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-TW)
config: zh-TW
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 56.73167451244117
- type: f1
value: 55.29236319279749
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (af)
config: af
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 64.05850706119705
- type: f1
value: 62.20100273658395
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (am)
config: am
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.24142568930733
- type: f1
value: 62.045023522098205
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ar)
config: ar
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.685272360457304
- type: f1
value: 63.315744557403285
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (az)
config: az
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.85743106926698
- type: f1
value: 59.106917986505636
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (bn)
config: bn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.1654337592468
- type: f1
value: 65.66986920813582
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (cy)
config: cy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 56.519838601210495
- type: f1
value: 54.73278620356587
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (da)
config: da
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.76395427034298
- type: f1
value: 66.3447645997219
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (de)
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.47814391392065
- type: f1
value: 66.32841368787447
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (el)
config: el
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.22864828513787
- type: f1
value: 69.02774052818218
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.04841963685273
- type: f1
value: 67.70789401248665
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (es)
config: es
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.08204438466711
- type: f1
value: 68.39277940460933
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fa)
config: fa
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.10154673839946
- type: f1
value: 70.7737194288215
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fi)
config: fi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.16207128446537
- type: f1
value: 66.2311820377212
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fr)
config: fr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.019502353732335
- type: f1
value: 62.105500895318656
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (he)
config: he
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.82985877605918
- type: f1
value: 67.4894449433449
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hi)
config: hi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.89643577673168
- type: f1
value: 65.45745898521055
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hu)
config: hu
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.32750504371216
- type: f1
value: 68.19665323990438
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hy)
config: hy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.8238063214526
- type: f1
value: 64.60872984606974
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (id)
config: id
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.98117014122394
- type: f1
value: 67.66697147027641
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (is)
config: is
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.137188971082715
- type: f1
value: 61.58358081191463
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (it)
config: it
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.0437121721587
- type: f1
value: 69.06747206775307
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ja)
config: ja
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.67585743106926
- type: f1
value: 70.08618915891508
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (jv)
config: jv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.788164088769335
- type: f1
value: 57.91398932676417
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ka)
config: ka
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 61.03227975790182
- type: f1
value: 60.044432258486715
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (km)
config: km
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 49.051782111634154
- type: f1
value: 45.434581931581555
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (kn)
config: kn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.78278412911902
- type: f1
value: 62.106197625881535
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ko)
config: ko
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.59986550100874
- type: f1
value: 68.94355682848476
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (lv)
config: lv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.97310020174847
- type: f1
value: 59.09912773329623
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ml)
config: ml
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.20309347679893
- type: f1
value: 67.90665916607239
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (mn)
config: mn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.72024209818427
- type: f1
value: 60.77165334831407
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ms)
config: ms
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.87155346334902
- type: f1
value: 65.7906032446679
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (my)
config: my
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 64.97646267652992
- type: f1
value: 63.89390215791396
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (nb)
config: nb
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.81371889710827
- type: f1
value: 64.39323436519936
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (nl)
config: nl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.79825151311366
- type: f1
value: 68.53789900442244
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.98991257565568
- type: f1
value: 68.93867074879778
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pt)
config: pt
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.50168123739071
- type: f1
value: 66.7457644903972
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ro)
config: ro
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.52521856086078
- type: f1
value: 66.83370797374445
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ru)
config: ru
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.96234028244787
- type: f1
value: 67.58983110064196
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sl)
config: sl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.56624075319435
- type: f1
value: 68.35270162147211
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sq)
config: sq
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.48352387357095
- type: f1
value: 66.66973143886908
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sv)
config: sv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.92535305985206
- type: f1
value: 66.52058462942483
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sw)
config: sw
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.184263618022875
- type: f1
value: 61.71153164960602
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ta)
config: ta
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 64.8453261600538
- type: f1
value: 63.863209439112346
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (te)
config: te
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.39340954942838
- type: f1
value: 63.85484524633183
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (th)
config: th
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.9892400806994
- type: f1
value: 66.57022479007357
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (tl)
config: tl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.399462004034966
- type: f1
value: 61.62381473991175
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (tr)
config: tr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.773369199731
- type: f1
value: 65.58317907780943
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ur)
config: ur
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.8069939475454
- type: f1
value: 64.47027323557235
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (vi)
config: vi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.51647612642904
- type: f1
value: 65.66061210324213
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.88365837256221
- type: f1
value: 67.56956454874091
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-TW)
config: zh-TW
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.29858776059179
- type: f1
value: 62.76318771484755
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
metrics:
- type: map_at_1
value: 2.9000000000000004
- type: map_at_10
value: 3.5360000000000005
- type: map_at_100
value: 3.703
- type: map_at_1000
value: 3.734
- type: map_at_3
value: 3.167
- type: map_at_5
value: 3.322
- type: mrr_at_1
value: 2.9000000000000004
- type: mrr_at_10
value: 3.5360000000000005
- type: mrr_at_100
value: 3.703
- type: mrr_at_1000
value: 3.734
- type: mrr_at_3
value: 3.167
- type: mrr_at_5
value: 3.322
- type: ndcg_at_1
value: 2.9000000000000004
- type: ndcg_at_10
value: 4.079
- type: ndcg_at_100
value: 5.101
- type: ndcg_at_1000
value: 6.295000000000001
- type: ndcg_at_3
value: 3.276
- type: ndcg_at_5
value: 3.56
- type: precision_at_1
value: 2.9000000000000004
- type: precision_at_10
value: 0.59
- type: precision_at_100
value: 0.11199999999999999
- type: precision_at_1000
value: 0.022000000000000002
- type: precision_at_3
value: 1.2
- type: precision_at_5
value: 0.86
- type: recall_at_1
value: 2.9000000000000004
- type: recall_at_10
value: 5.8999999999999995
- type: recall_at_100
value: 11.200000000000001
- type: recall_at_1000
value: 21.5
- type: recall_at_3
value: 3.5999999999999996
- type: recall_at_5
value: 4.3
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 19.061819627060558
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 19.79520446745267
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 26.881162218991285
- type: mrr
value: 27.23201335662217
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
metrics:
- type: accuracy
value: 57.69
- type: f1
value: 57.370451927892695
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.443
- type: map_at_10
value: 1.189
- type: map_at_100
value: 2.221
- type: map_at_1000
value: 3.034
- type: map_at_3
value: 0.683
- type: map_at_5
value: 0.882
- type: mrr_at_1
value: 4.334
- type: mrr_at_10
value: 10.908
- type: mrr_at_100
value: 12.536
- type: mrr_at_1000
value: 12.642000000000001
- type: mrr_at_3
value: 7.481999999999999
- type: mrr_at_5
value: 9.324
- type: ndcg_at_1
value: 3.7150000000000003
- type: ndcg_at_10
value: 5.591
- type: ndcg_at_100
value: 9.522
- type: ndcg_at_1000
value: 19.705000000000002
- type: ndcg_at_3
value: 4.292
- type: ndcg_at_5
value: 5.038
- type: precision_at_1
value: 4.334
- type: precision_at_10
value: 5.077
- type: precision_at_100
value: 3.2910000000000004
- type: precision_at_1000
value: 1.568
- type: precision_at_3
value: 4.644
- type: precision_at_5
value: 5.139
- type: recall_at_1
value: 0.443
- type: recall_at_10
value: 3.3520000000000003
- type: recall_at_100
value: 15.515
- type: recall_at_1000
value: 50.505
- type: recall_at_3
value: 0.931
- type: recall_at_5
value: 1.698
- task:
type: Retrieval
dataset:
type: nfcorpus-pl
name: MTEB NFCorpus-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.307
- type: map_at_10
value: 0.835
- type: map_at_100
value: 1.503
- type: map_at_1000
value: 2.263
- type: map_at_3
value: 0.503
- type: map_at_5
value: 0.567
- type: mrr_at_1
value: 4.025
- type: mrr_at_10
value: 9.731
- type: mrr_at_100
value: 11.229
- type: mrr_at_1000
value: 11.34
- type: mrr_at_3
value: 6.811
- type: mrr_at_5
value: 8.126999999999999
- type: ndcg_at_1
value: 3.56
- type: ndcg_at_10
value: 4.596
- type: ndcg_at_100
value: 7.567
- type: ndcg_at_1000
value: 17.76
- type: ndcg_at_3
value: 3.52
- type: ndcg_at_5
value: 3.823
- type: precision_at_1
value: 4.025
- type: precision_at_10
value: 4.334
- type: precision_at_100
value: 2.842
- type: precision_at_1000
value: 1.506
- type: precision_at_3
value: 3.818
- type: precision_at_5
value: 4.149
- type: recall_at_1
value: 0.307
- type: recall_at_10
value: 2.543
- type: recall_at_100
value: 12.152000000000001
- type: recall_at_1000
value: 46.878
- type: recall_at_3
value: 0.755
- type: recall_at_5
value: 0.975
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.439
- type: map_at_10
value: 0.6839999999999999
- type: map_at_100
value: 0.769
- type: map_at_1000
value: 0.79
- type: map_at_3
value: 0.584
- type: map_at_5
value: 0.621
- type: mrr_at_1
value: 0.5499999999999999
- type: mrr_at_10
value: 0.819
- type: mrr_at_100
value: 0.9169999999999999
- type: mrr_at_1000
value: 0.9400000000000001
- type: mrr_at_3
value: 0.705
- type: mrr_at_5
value: 0.75
- type: ndcg_at_1
value: 0.5499999999999999
- type: ndcg_at_10
value: 0.886
- type: ndcg_at_100
value: 1.422
- type: ndcg_at_1000
value: 2.2079999999999997
- type: ndcg_at_3
value: 0.6629999999999999
- type: ndcg_at_5
value: 0.735
- type: precision_at_1
value: 0.5499999999999999
- type: precision_at_10
value: 0.16199999999999998
- type: precision_at_100
value: 0.048
- type: precision_at_1000
value: 0.012
- type: precision_at_3
value: 0.309
- type: precision_at_5
value: 0.22599999999999998
- type: recall_at_1
value: 0.439
- type: recall_at_10
value: 1.405
- type: recall_at_100
value: 4.051
- type: recall_at_1000
value: 10.487
- type: recall_at_3
value: 0.787
- type: recall_at_5
value: 0.9560000000000001
- task:
type: Retrieval
dataset:
type: narrativeqa
name: MTEB NarrativeQARetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.93
- type: map_at_10
value: 7.349
- type: map_at_100
value: 8.011
- type: map_at_1000
value: 8.351
- type: map_at_3
value: 6.787
- type: map_at_5
value: 7.02
- type: mrr_at_1
value: 5.93
- type: mrr_at_10
value: 7.349
- type: mrr_at_100
value: 8.011
- type: mrr_at_1000
value: 8.351
- type: mrr_at_3
value: 6.787
- type: mrr_at_5
value: 7.02
- type: ndcg_at_1
value: 5.93
- type: ndcg_at_10
value: 8.291
- type: ndcg_at_100
value: 12.833
- type: ndcg_at_1000
value: 21.253
- type: ndcg_at_3
value: 7.072000000000001
- type: ndcg_at_5
value: 7.495
- type: precision_at_1
value: 5.93
- type: precision_at_10
value: 1.1400000000000001
- type: precision_at_100
value: 0.359
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 2.633
- type: precision_at_5
value: 1.786
- type: recall_at_1
value: 5.93
- type: recall_at_10
value: 11.395
- type: recall_at_100
value: 35.929
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 7.9
- type: recall_at_5
value: 8.932
- task:
type: Classification
dataset:
type: ScandEval/norec-mini
name: MTEB NoRecClassification
config: default
split: test
revision: 07b99ab3363c2e7f8f87015b01c21f4d9b917ce3
metrics:
- type: accuracy
value: 48.251953125
- type: f1
value: 45.42526611578402
- task:
type: Classification
dataset:
type: strombergnlp/nordic_langid
name: MTEB NordicLangClassification
config: default
split: test
revision: e254179d18ab0165fdb6dbef91178266222bee2a
metrics:
- type: accuracy
value: 48.403333333333336
- type: f1
value: 47.9287124185198
- task:
type: BitextMining
dataset:
type: kardosdrur/norwegian-courts
name: MTEB NorwegianCourtsBitextMining
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 93.85964912280701
- type: f1
value: 92.98245614035088
- type: precision
value: 92.54385964912281
- type: recall
value: 93.85964912280701
- task:
type: Classification
dataset:
type: NbAiLab/norwegian_parliament
name: MTEB NorwegianParliament
config: default
split: test
revision: f7393532774c66312378d30b197610b43d751972
metrics:
- type: accuracy
value: 55.991666666666674
- type: ap
value: 53.417849849746226
- type: f1
value: 55.757916182475384
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
metrics:
- type: cos_sim_accuracy
value: 54.68327016783974
- type: cos_sim_ap
value: 55.175059616546406
- type: cos_sim_f1
value: 67.81733189500179
- type: cos_sim_precision
value: 51.41766630316249
- type: cos_sim_recall
value: 99.57761351636748
- type: dot_accuracy
value: 54.68327016783974
- type: dot_ap
value: 55.175059616546406
- type: dot_f1
value: 67.81733189500179
- type: dot_precision
value: 51.41766630316249
- type: dot_recall
value: 99.57761351636748
- type: euclidean_accuracy
value: 54.68327016783974
- type: euclidean_ap
value: 55.17510180566365
- type: euclidean_f1
value: 67.81733189500179
- type: euclidean_precision
value: 51.41766630316249
- type: euclidean_recall
value: 99.57761351636748
- type: manhattan_accuracy
value: 55.44125609095831
- type: manhattan_ap
value: 55.76283671826867
- type: manhattan_f1
value: 68.05905653583004
- type: manhattan_precision
value: 51.63934426229508
- type: manhattan_recall
value: 99.78880675818374
- type: max_accuracy
value: 55.44125609095831
- type: max_ap
value: 55.76283671826867
- type: max_f1
value: 68.05905653583004
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: e610f2ebd179a8fda30ae534c3878750a96db120
metrics:
- type: accuracy
value: 75.64
- type: ap
value: 71.45085103287833
- type: f1
value: 75.52254495697326
- task:
type: Classification
dataset:
type: laugustyniak/abusive-clauses-pl
name: MTEB PAC
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 73.86620330147699
- type: ap
value: 80.58015815306322
- type: f1
value: 71.49082510883872
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
metrics:
- type: cos_sim_pearson
value: 29.52361689421863
- type: cos_sim_spearman
value: 32.750058577257875
- type: euclidean_pearson
value: 34.583472972871796
- type: euclidean_spearman
value: 32.75328764421994
- type: manhattan_pearson
value: 34.727366510326995
- type: manhattan_spearman
value: 32.787167142114214
- task:
type: PairClassification
dataset:
type: PL-MTEB/ppc-pairclassification
name: MTEB PPC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 71.1
- type: cos_sim_ap
value: 85.36544548691205
- type: cos_sim_f1
value: 75.23393636930756
- type: cos_sim_precision
value: 60.36036036036037
- type: cos_sim_recall
value: 99.83443708609272
- type: dot_accuracy
value: 71.1
- type: dot_ap
value: 85.36544548691204
- type: dot_f1
value: 75.23393636930756
- type: dot_precision
value: 60.36036036036037
- type: dot_recall
value: 99.83443708609272
- type: euclidean_accuracy
value: 71.1
- type: euclidean_ap
value: 85.36544548691205
- type: euclidean_f1
value: 75.23393636930756
- type: euclidean_precision
value: 60.36036036036037
- type: euclidean_recall
value: 99.83443708609272
- type: manhattan_accuracy
value: 71.1
- type: manhattan_ap
value: 85.33853868545614
- type: manhattan_f1
value: 75.23393636930756
- type: manhattan_precision
value: 60.36036036036037
- type: manhattan_recall
value: 99.83443708609272
- type: max_accuracy
value: 71.1
- type: max_ap
value: 85.36544548691205
- type: max_f1
value: 75.23393636930756
- task:
type: PairClassification
dataset:
type: PL-MTEB/psc-pairclassification
name: MTEB PSC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 90.81632653061224
- type: cos_sim_ap
value: 91.97693749083473
- type: cos_sim_f1
value: 85.55078683834049
- type: cos_sim_precision
value: 80.59299191374663
- type: cos_sim_recall
value: 91.15853658536585
- type: dot_accuracy
value: 90.81632653061224
- type: dot_ap
value: 91.97693749083473
- type: dot_f1
value: 85.55078683834049
- type: dot_precision
value: 80.59299191374663
- type: dot_recall
value: 91.15853658536585
- type: euclidean_accuracy
value: 90.81632653061224
- type: euclidean_ap
value: 91.97693749083473
- type: euclidean_f1
value: 85.55078683834049
- type: euclidean_precision
value: 80.59299191374663
- type: euclidean_recall
value: 91.15853658536585
- type: manhattan_accuracy
value: 90.9090909090909
- type: manhattan_ap
value: 92.043441286281
- type: manhattan_f1
value: 85.34482758620689
- type: manhattan_precision
value: 80.70652173913044
- type: manhattan_recall
value: 90.54878048780488
- type: max_accuracy
value: 90.9090909090909
- type: max_ap
value: 92.043441286281
- type: max_f1
value: 85.55078683834049
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (de)
config: de
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 70.35
- type: cos_sim_ap
value: 72.01641717127626
- type: cos_sim_f1
value: 64.49511400651467
- type: cos_sim_precision
value: 55.26315789473685
- type: cos_sim_recall
value: 77.43016759776536
- type: dot_accuracy
value: 70.35
- type: dot_ap
value: 72.06599137974572
- type: dot_f1
value: 64.49511400651467
- type: dot_precision
value: 55.26315789473685
- type: dot_recall
value: 77.43016759776536
- type: euclidean_accuracy
value: 70.35
- type: euclidean_ap
value: 71.92019289154159
- type: euclidean_f1
value: 64.49511400651467
- type: euclidean_precision
value: 55.26315789473685
- type: euclidean_recall
value: 77.43016759776536
- type: manhattan_accuracy
value: 70.35
- type: manhattan_ap
value: 71.92979188519502
- type: manhattan_f1
value: 64.60409019402202
- type: manhattan_precision
value: 60.86956521739131
- type: manhattan_recall
value: 68.8268156424581
- type: max_accuracy
value: 70.35
- type: max_ap
value: 72.06599137974572
- type: max_f1
value: 64.60409019402202
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (en)
config: en
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 71.0
- type: cos_sim_ap
value: 74.73017292645147
- type: cos_sim_f1
value: 66.73427991886409
- type: cos_sim_precision
value: 61.78403755868545
- type: cos_sim_recall
value: 72.54685777287762
- type: dot_accuracy
value: 71.0
- type: dot_ap
value: 74.73017292645147
- type: dot_f1
value: 66.73427991886409
- type: dot_precision
value: 61.78403755868545
- type: dot_recall
value: 72.54685777287762
- type: euclidean_accuracy
value: 71.0
- type: euclidean_ap
value: 74.73013082197343
- type: euclidean_f1
value: 66.73427991886409
- type: euclidean_precision
value: 61.78403755868545
- type: euclidean_recall
value: 72.54685777287762
- type: manhattan_accuracy
value: 70.95
- type: manhattan_ap
value: 74.71203917486744
- type: manhattan_f1
value: 66.86868686868686
- type: manhattan_precision
value: 61.696178937558244
- type: manhattan_recall
value: 72.98787210584344
- type: max_accuracy
value: 71.0
- type: max_ap
value: 74.73017292645147
- type: max_f1
value: 66.86868686868686
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (es)
config: es
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 67.7
- type: cos_sim_ap
value: 69.70320170421651
- type: cos_sim_f1
value: 62.55625562556255
- type: cos_sim_precision
value: 52.851711026615966
- type: cos_sim_recall
value: 76.62624035281146
- type: dot_accuracy
value: 67.7
- type: dot_ap
value: 69.70320170421651
- type: dot_f1
value: 62.55625562556255
- type: dot_precision
value: 52.851711026615966
- type: dot_recall
value: 76.62624035281146
- type: euclidean_accuracy
value: 67.7
- type: euclidean_ap
value: 69.70320170421651
- type: euclidean_f1
value: 62.55625562556255
- type: euclidean_precision
value: 52.851711026615966
- type: euclidean_recall
value: 76.62624035281146
- type: manhattan_accuracy
value: 67.75
- type: manhattan_ap
value: 69.67833816050764
- type: manhattan_f1
value: 62.734082397003746
- type: manhattan_precision
value: 54.515866558177386
- type: manhattan_recall
value: 73.8699007717751
- type: max_accuracy
value: 67.75
- type: max_ap
value: 69.70320170421651
- type: max_f1
value: 62.734082397003746
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (fr)
config: fr
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 69.0
- type: cos_sim_ap
value: 71.36406639969131
- type: cos_sim_f1
value: 64.45993031358886
- type: cos_sim_precision
value: 53.12275664034458
- type: cos_sim_recall
value: 81.94905869324474
- type: dot_accuracy
value: 69.0
- type: dot_ap
value: 71.2599779415656
- type: dot_f1
value: 64.45993031358886
- type: dot_precision
value: 53.12275664034458
- type: dot_recall
value: 81.94905869324474
- type: euclidean_accuracy
value: 69.0
- type: euclidean_ap
value: 71.3126257271965
- type: euclidean_f1
value: 64.45993031358886
- type: euclidean_precision
value: 53.12275664034458
- type: euclidean_recall
value: 81.94905869324474
- type: manhattan_accuracy
value: 69.0
- type: manhattan_ap
value: 71.29361764028188
- type: manhattan_f1
value: 64.54789615040288
- type: manhattan_precision
value: 54.16979714500376
- type: manhattan_recall
value: 79.84496124031007
- type: max_accuracy
value: 69.0
- type: max_ap
value: 71.36406639969131
- type: max_f1
value: 64.54789615040288
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (ja)
config: ja
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 63.849999999999994
- type: cos_sim_ap
value: 60.914955950361026
- type: cos_sim_f1
value: 62.4556422995032
- type: cos_sim_precision
value: 45.47803617571059
- type: cos_sim_recall
value: 99.66024915062289
- type: dot_accuracy
value: 63.849999999999994
- type: dot_ap
value: 60.808056565465506
- type: dot_f1
value: 62.4556422995032
- type: dot_precision
value: 45.47803617571059
- type: dot_recall
value: 99.66024915062289
- type: euclidean_accuracy
value: 63.849999999999994
- type: euclidean_ap
value: 60.8231492677072
- type: euclidean_f1
value: 62.4556422995032
- type: euclidean_precision
value: 45.47803617571059
- type: euclidean_recall
value: 99.66024915062289
- type: manhattan_accuracy
value: 63.800000000000004
- type: manhattan_ap
value: 60.86392751846975
- type: manhattan_f1
value: 62.43348705214614
- type: manhattan_precision
value: 45.45454545454545
- type: manhattan_recall
value: 99.66024915062289
- type: max_accuracy
value: 63.849999999999994
- type: max_ap
value: 60.914955950361026
- type: max_f1
value: 62.4556422995032
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (ko)
config: ko
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 61.1
- type: cos_sim_ap
value: 58.40339411735916
- type: cos_sim_f1
value: 62.7906976744186
- type: cos_sim_precision
value: 46.55172413793103
- type: cos_sim_recall
value: 96.42857142857143
- type: dot_accuracy
value: 61.1
- type: dot_ap
value: 58.439189685586456
- type: dot_f1
value: 62.7906976744186
- type: dot_precision
value: 46.55172413793103
- type: dot_recall
value: 96.42857142857143
- type: euclidean_accuracy
value: 61.1
- type: euclidean_ap
value: 58.34968788203145
- type: euclidean_f1
value: 62.7906976744186
- type: euclidean_precision
value: 46.55172413793103
- type: euclidean_recall
value: 96.42857142857143
- type: manhattan_accuracy
value: 61.1
- type: manhattan_ap
value: 58.31504446861402
- type: manhattan_f1
value: 62.636562272396226
- type: manhattan_precision
value: 46.48648648648649
- type: manhattan_recall
value: 95.98214285714286
- type: max_accuracy
value: 61.1
- type: max_ap
value: 58.439189685586456
- type: max_f1
value: 62.7906976744186
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (zh)
config: zh
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 64.2
- type: cos_sim_ap
value: 63.73722153283802
- type: cos_sim_f1
value: 62.52707581227437
- type: cos_sim_precision
value: 46.16204690831556
- type: cos_sim_recall
value: 96.86800894854586
- type: dot_accuracy
value: 64.2
- type: dot_ap
value: 63.67335241021108
- type: dot_f1
value: 62.52707581227437
- type: dot_precision
value: 46.16204690831556
- type: dot_recall
value: 96.86800894854586
- type: euclidean_accuracy
value: 64.2
- type: euclidean_ap
value: 63.77399571117368
- type: euclidean_f1
value: 62.52707581227437
- type: euclidean_precision
value: 46.16204690831556
- type: euclidean_recall
value: 96.86800894854586
- type: manhattan_accuracy
value: 64.5
- type: manhattan_ap
value: 63.747406783360816
- type: manhattan_f1
value: 62.58601955813112
- type: manhattan_precision
value: 46.27745045527584
- type: manhattan_recall
value: 96.64429530201343
- type: max_accuracy
value: 64.5
- type: max_ap
value: 63.77399571117368
- type: max_f1
value: 62.58601955813112
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_in
name: MTEB PolEmo2.0-IN
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 52.797783933518005
- type: f1
value: 53.84971294048786
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_out
name: MTEB PolEmo2.0-OUT
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 38.40080971659919
- type: f1
value: 30.38990873840624
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
metrics:
- type: cos_sim_pearson
value: 23.34232568997104
- type: cos_sim_spearman
value: 24.47961936211083
- type: euclidean_pearson
value: 22.03140944610336
- type: euclidean_spearman
value: 24.47949166265398
- type: manhattan_pearson
value: 25.542406448726908
- type: manhattan_spearman
value: 28.655724283839533
- task:
type: Retrieval
dataset:
type: quora-pl
name: MTEB Quora-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 59.938
- type: map_at_10
value: 72.734
- type: map_at_100
value: 73.564
- type: map_at_1000
value: 73.602
- type: map_at_3
value: 69.707
- type: map_at_5
value: 71.515
- type: mrr_at_1
value: 69.28
- type: mrr_at_10
value: 76.97500000000001
- type: mrr_at_100
value: 77.27199999999999
- type: mrr_at_1000
value: 77.28
- type: mrr_at_3
value: 75.355
- type: mrr_at_5
value: 76.389
- type: ndcg_at_1
value: 69.33
- type: ndcg_at_10
value: 77.61099999999999
- type: ndcg_at_100
value: 80.02
- type: ndcg_at_1000
value: 80.487
- type: ndcg_at_3
value: 73.764
- type: ndcg_at_5
value: 75.723
- type: precision_at_1
value: 69.33
- type: precision_at_10
value: 11.917
- type: precision_at_100
value: 1.447
- type: precision_at_1000
value: 0.154
- type: precision_at_3
value: 32.29
- type: precision_at_5
value: 21.432000000000002
- type: recall_at_1
value: 59.938
- type: recall_at_10
value: 87.252
- type: recall_at_100
value: 96.612
- type: recall_at_1000
value: 99.388
- type: recall_at_3
value: 76.264
- type: recall_at_5
value: 81.71000000000001
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 61.458999999999996
- type: map_at_10
value: 73.90299999999999
- type: map_at_100
value: 74.733
- type: map_at_1000
value: 74.771
- type: map_at_3
value: 70.999
- type: map_at_5
value: 72.745
- type: mrr_at_1
value: 70.93
- type: mrr_at_10
value: 78.353
- type: mrr_at_100
value: 78.636
- type: mrr_at_1000
value: 78.644
- type: mrr_at_3
value: 76.908
- type: mrr_at_5
value: 77.807
- type: ndcg_at_1
value: 70.93
- type: ndcg_at_10
value: 78.625
- type: ndcg_at_100
value: 81.01
- type: ndcg_at_1000
value: 81.45700000000001
- type: ndcg_at_3
value: 75.045
- type: ndcg_at_5
value: 76.84299999999999
- type: precision_at_1
value: 70.93
- type: precision_at_10
value: 11.953
- type: precision_at_100
value: 1.4489999999999998
- type: precision_at_1000
value: 0.154
- type: precision_at_3
value: 32.65
- type: precision_at_5
value: 21.598
- type: recall_at_1
value: 61.458999999999996
- type: recall_at_10
value: 87.608
- type: recall_at_100
value: 96.818
- type: recall_at_1000
value: 99.445
- type: recall_at_3
value: 77.354
- type: recall_at_5
value: 82.334
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 28.519889100999958
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 38.62765374782771
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.52
- type: map_at_10
value: 0.893
- type: map_at_100
value: 1.113
- type: map_at_1000
value: 1.304
- type: map_at_3
value: 0.7779999999999999
- type: map_at_5
value: 0.8200000000000001
- type: mrr_at_1
value: 2.6
- type: mrr_at_10
value: 4.0680000000000005
- type: mrr_at_100
value: 4.6080000000000005
- type: mrr_at_1000
value: 4.797
- type: mrr_at_3
value: 3.5999999999999996
- type: mrr_at_5
value: 3.8150000000000004
- type: ndcg_at_1
value: 2.6
- type: ndcg_at_10
value: 1.79
- type: ndcg_at_100
value: 3.5549999999999997
- type: ndcg_at_1000
value: 9.942
- type: ndcg_at_3
value: 1.94
- type: ndcg_at_5
value: 1.543
- type: precision_at_1
value: 2.6
- type: precision_at_10
value: 0.8500000000000001
- type: precision_at_100
value: 0.361
- type: precision_at_1000
value: 0.197
- type: precision_at_3
value: 1.7670000000000001
- type: precision_at_5
value: 1.26
- type: recall_at_1
value: 0.52
- type: recall_at_10
value: 1.7149999999999999
- type: recall_at_100
value: 7.318
- type: recall_at_1000
value: 39.915
- type: recall_at_3
value: 1.0699999999999998
- type: recall_at_5
value: 1.27
- task:
type: Retrieval
dataset:
type: scidocs-pl
name: MTEB SCIDOCS-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.32
- type: map_at_10
value: 0.676
- type: map_at_100
value: 0.847
- type: map_at_1000
value: 1.032
- type: map_at_3
value: 0.5369999999999999
- type: map_at_5
value: 0.592
- type: mrr_at_1
value: 1.6
- type: mrr_at_10
value: 2.863
- type: mrr_at_100
value: 3.334
- type: mrr_at_1000
value: 3.5479999999999996
- type: mrr_at_3
value: 2.317
- type: mrr_at_5
value: 2.587
- type: ndcg_at_1
value: 1.6
- type: ndcg_at_10
value: 1.397
- type: ndcg_at_100
value: 2.819
- type: ndcg_at_1000
value: 9.349
- type: ndcg_at_3
value: 1.3
- type: ndcg_at_5
value: 1.1079999999999999
- type: precision_at_1
value: 1.6
- type: precision_at_10
value: 0.74
- type: precision_at_100
value: 0.295
- type: precision_at_1000
value: 0.194
- type: precision_at_3
value: 1.2
- type: precision_at_5
value: 0.96
- type: recall_at_1
value: 0.32
- type: recall_at_10
value: 1.505
- type: recall_at_100
value: 5.988
- type: recall_at_1000
value: 39.308
- type: recall_at_3
value: 0.72
- type: recall_at_5
value: 0.9650000000000001
- task:
type: PairClassification
dataset:
type: PL-MTEB/sicke-pl-pairclassification
name: MTEB SICK-E-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 73.84834896045659
- type: cos_sim_ap
value: 55.484124732566606
- type: cos_sim_f1
value: 57.34228187919464
- type: cos_sim_precision
value: 46.01464885825076
- type: cos_sim_recall
value: 76.06837606837607
- type: dot_accuracy
value: 73.84834896045659
- type: dot_ap
value: 55.48400003295399
- type: dot_f1
value: 57.34228187919464
- type: dot_precision
value: 46.01464885825076
- type: dot_recall
value: 76.06837606837607
- type: euclidean_accuracy
value: 73.84834896045659
- type: euclidean_ap
value: 55.48407331902175
- type: euclidean_f1
value: 57.34228187919464
- type: euclidean_precision
value: 46.01464885825076
- type: euclidean_recall
value: 76.06837606837607
- type: manhattan_accuracy
value: 73.80758255197716
- type: manhattan_ap
value: 55.42477275597209
- type: manhattan_f1
value: 57.55860953920776
- type: manhattan_precision
value: 46.29388816644994
- type: manhattan_recall
value: 76.06837606837607
- type: max_accuracy
value: 73.84834896045659
- type: max_ap
value: 55.484124732566606
- type: max_f1
value: 57.55860953920776
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 67.03943120783973
- type: cos_sim_spearman
value: 62.93971145260584
- type: euclidean_pearson
value: 64.13947263916926
- type: euclidean_spearman
value: 62.93972324235839
- type: manhattan_pearson
value: 64.11295322654566
- type: manhattan_spearman
value: 62.92816122293202
- task:
type: STS
dataset:
type: PL-MTEB/sickr-pl-sts
name: MTEB SICK-R-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 67.75034167381077
- type: cos_sim_spearman
value: 62.98158872758643
- type: euclidean_pearson
value: 64.25794794439082
- type: euclidean_spearman
value: 62.981566596223125
- type: manhattan_pearson
value: 64.25439446502435
- type: manhattan_spearman
value: 63.01301439900365
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 61.622204530882755
- type: cos_sim_spearman
value: 65.4632047656541
- type: euclidean_pearson
value: 59.21529585527598
- type: euclidean_spearman
value: 65.4638163967956
- type: manhattan_pearson
value: 59.39341472707122
- type: manhattan_spearman
value: 65.57635757250173
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 60.329743331971486
- type: cos_sim_spearman
value: 62.78607195958339
- type: euclidean_pearson
value: 62.07415212138581
- type: euclidean_spearman
value: 62.78618151904129
- type: manhattan_pearson
value: 62.41250554765521
- type: manhattan_spearman
value: 62.87580558029627
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 59.16277512775291
- type: cos_sim_spearman
value: 57.53693422381856
- type: euclidean_pearson
value: 57.85017283427473
- type: euclidean_spearman
value: 57.53697385589326
- type: manhattan_pearson
value: 58.049796184955596
- type: manhattan_spearman
value: 57.76174789162225
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 74.42588553600197
- type: cos_sim_spearman
value: 74.25087788257943
- type: euclidean_pearson
value: 73.35436018935222
- type: euclidean_spearman
value: 74.25087694991477
- type: manhattan_pearson
value: 73.33747415771185
- type: manhattan_spearman
value: 74.21504509447377
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 75.77242432372144
- type: cos_sim_spearman
value: 75.72930700521489
- type: euclidean_pearson
value: 75.6995220623788
- type: euclidean_spearman
value: 75.72930646047212
- type: manhattan_pearson
value: 75.65841087952896
- type: manhattan_spearman
value: 75.69567692328437
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (ko-ko)
config: ko-ko
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 66.2495297342053
- type: cos_sim_spearman
value: 66.14124319602982
- type: euclidean_pearson
value: 66.49498096178358
- type: euclidean_spearman
value: 66.14121792287747
- type: manhattan_pearson
value: 66.51560623835172
- type: manhattan_spearman
value: 66.05794413582558
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (ar-ar)
config: ar-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 75.0045186560239
- type: cos_sim_spearman
value: 74.96504390762252
- type: euclidean_pearson
value: 74.20988464347049
- type: euclidean_spearman
value: 74.98114602301776
- type: manhattan_pearson
value: 74.37929169860529
- type: manhattan_spearman
value: 75.37049827509504
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-ar)
config: en-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 73.88478151514396
- type: cos_sim_spearman
value: 74.05322141272103
- type: euclidean_pearson
value: 73.52175483343693
- type: euclidean_spearman
value: 74.05322141272103
- type: manhattan_pearson
value: 73.35875118828287
- type: manhattan_spearman
value: 73.83972625384673
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-de)
config: en-de
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 75.57014781622605
- type: cos_sim_spearman
value: 74.95329129562734
- type: euclidean_pearson
value: 75.5667786729257
- type: euclidean_spearman
value: 74.95329129562734
- type: manhattan_pearson
value: 75.39548673816147
- type: manhattan_spearman
value: 74.89428642503749
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 80.04007129652777
- type: cos_sim_spearman
value: 79.94429611477106
- type: euclidean_pearson
value: 79.91583070858822
- type: euclidean_spearman
value: 79.94429611477106
- type: manhattan_pearson
value: 80.14382273152769
- type: manhattan_spearman
value: 80.23862855392836
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-tr)
config: en-tr
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 77.28740870194635
- type: cos_sim_spearman
value: 77.18286391819586
- type: euclidean_pearson
value: 77.05644328687119
- type: euclidean_spearman
value: 77.18286391819586
- type: manhattan_pearson
value: 77.15625898067294
- type: manhattan_spearman
value: 77.03165154316278
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (es-en)
config: es-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 72.99293002371301
- type: cos_sim_spearman
value: 72.24657859872468
- type: euclidean_pearson
value: 73.38839879755461
- type: euclidean_spearman
value: 72.24657859872468
- type: manhattan_pearson
value: 73.6627728800822
- type: manhattan_spearman
value: 72.70893449698669
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (es-es)
config: es-es
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 81.37213723705916
- type: cos_sim_spearman
value: 80.64548512701263
- type: euclidean_pearson
value: 80.94992193351284
- type: euclidean_spearman
value: 80.64484963200427
- type: manhattan_pearson
value: 80.92246813841794
- type: manhattan_spearman
value: 80.68860823161657
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (fr-en)
config: fr-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 77.54059604962391
- type: cos_sim_spearman
value: 77.19559169700682
- type: euclidean_pearson
value: 77.32739821317861
- type: euclidean_spearman
value: 77.19559169700682
- type: manhattan_pearson
value: 77.29224328831437
- type: manhattan_spearman
value: 77.24394878313191
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (it-en)
config: it-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 79.06397062195414
- type: cos_sim_spearman
value: 78.66694637555244
- type: euclidean_pearson
value: 79.34923290885872
- type: euclidean_spearman
value: 78.66694637555244
- type: manhattan_pearson
value: 79.50802161625809
- type: manhattan_spearman
value: 78.79195213396169
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (nl-en)
config: nl-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 78.66045829245238
- type: cos_sim_spearman
value: 78.14055373851183
- type: euclidean_pearson
value: 78.94489279300518
- type: euclidean_spearman
value: 78.14055373851183
- type: manhattan_pearson
value: 79.33473165536323
- type: manhattan_spearman
value: 78.5783429705299
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 36.63454535818336
- type: cos_sim_spearman
value: 47.12016162570126
- type: euclidean_pearson
value: 39.07268779927362
- type: euclidean_spearman
value: 47.12016162570126
- type: manhattan_pearson
value: 41.723119770725944
- type: manhattan_spearman
value: 47.90334362422989
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de)
config: de
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 13.325547358617957
- type: cos_sim_spearman
value: 24.094051740693416
- type: euclidean_pearson
value: 10.39110006005262
- type: euclidean_spearman
value: 24.094051740693416
- type: manhattan_pearson
value: 12.4380555005162
- type: manhattan_spearman
value: 25.176800279885715
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es)
config: es
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 41.21281570342249
- type: cos_sim_spearman
value: 55.397885077207974
- type: euclidean_pearson
value: 43.96150945976646
- type: euclidean_spearman
value: 55.397885077207974
- type: manhattan_pearson
value: 49.58812224529121
- type: manhattan_spearman
value: 55.35874879475974
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl)
config: pl
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 5.985012243744998
- type: cos_sim_spearman
value: 25.307464943919012
- type: euclidean_pearson
value: -4.080537702499046
- type: euclidean_spearman
value: 25.307464943919012
- type: manhattan_pearson
value: -2.5058642304196543
- type: manhattan_spearman
value: 26.751588484373233
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (tr)
config: tr
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 34.44666578772084
- type: cos_sim_spearman
value: 46.45977141800899
- type: euclidean_pearson
value: 38.78305544036559
- type: euclidean_spearman
value: 46.45977141800899
- type: manhattan_pearson
value: 46.45101297876112
- type: manhattan_spearman
value: 50.642972694093814
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (ar)
config: ar
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 28.095327083873055
- type: cos_sim_spearman
value: 40.24741745875892
- type: euclidean_pearson
value: 29.141496784653892
- type: euclidean_spearman
value: 40.24741745875892
- type: manhattan_pearson
value: 32.013290716034064
- type: manhattan_spearman
value: 40.85454084311211
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (ru)
config: ru
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 27.46788309503312
- type: cos_sim_spearman
value: 43.57385391855994
- type: euclidean_pearson
value: 24.558349674326177
- type: euclidean_spearman
value: 43.57385391855994
- type: manhattan_pearson
value: 28.974505207055866
- type: manhattan_spearman
value: 44.111553205713
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 34.87841073990563
- type: cos_sim_spearman
value: 52.8221686505807
- type: euclidean_pearson
value: 38.36114580544504
- type: euclidean_spearman
value: 52.8221686505807
- type: manhattan_pearson
value: 46.69329448756753
- type: manhattan_spearman
value: 53.9140781097337
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (fr)
config: fr
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 49.999267528357
- type: cos_sim_spearman
value: 61.71837669697145
- type: euclidean_pearson
value: 53.578476744372274
- type: euclidean_spearman
value: 61.71837669697145
- type: manhattan_pearson
value: 56.410294227490795
- type: manhattan_spearman
value: 60.684457655864875
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-en)
config: de-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 22.43564137760586
- type: cos_sim_spearman
value: 34.28346144104183
- type: euclidean_pearson
value: 27.41326011184764
- type: euclidean_spearman
value: 34.28346144104183
- type: manhattan_pearson
value: 35.62923154232163
- type: manhattan_spearman
value: 37.937151135297185
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es-en)
config: es-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 44.34071611983998
- type: cos_sim_spearman
value: 57.823185616169646
- type: euclidean_pearson
value: 49.29310650157244
- type: euclidean_spearman
value: 57.823185616169646
- type: manhattan_pearson
value: 55.93298736518848
- type: manhattan_spearman
value: 58.57556581684834
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (it)
config: it
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 56.07027840344927
- type: cos_sim_spearman
value: 62.20158260763411
- type: euclidean_pearson
value: 55.887969718543616
- type: euclidean_spearman
value: 62.20158260763411
- type: manhattan_pearson
value: 56.081533365738444
- type: manhattan_spearman
value: 62.018651361750685
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl-en)
config: pl-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 41.41816324477061
- type: cos_sim_spearman
value: 44.71684955996943
- type: euclidean_pearson
value: 42.74585025834968
- type: euclidean_spearman
value: 44.71684955996943
- type: manhattan_pearson
value: 47.992481632815256
- type: manhattan_spearman
value: 46.18587933349126
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh-en)
config: zh-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 38.89140730917917
- type: cos_sim_spearman
value: 49.18633779347391
- type: euclidean_pearson
value: 43.27605428753535
- type: euclidean_spearman
value: 49.18633779347391
- type: manhattan_pearson
value: 48.22046568809415
- type: manhattan_spearman
value: 49.248416391249464
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es-it)
config: es-it
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 40.31620568726327
- type: cos_sim_spearman
value: 49.13034440774138
- type: euclidean_pearson
value: 43.95169508285692
- type: euclidean_spearman
value: 49.13034440774138
- type: manhattan_pearson
value: 48.84250981398146
- type: manhattan_spearman
value: 49.54216339903405
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-fr)
config: de-fr
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 27.074582378144058
- type: cos_sim_spearman
value: 41.29498619968451
- type: euclidean_pearson
value: 28.993986097276505
- type: euclidean_spearman
value: 41.29498619968451
- type: manhattan_pearson
value: 32.079813951133254
- type: manhattan_spearman
value: 43.664111732941464
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-pl)
config: de-pl
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 6.864334110072116
- type: cos_sim_spearman
value: 25.805458732687914
- type: euclidean_pearson
value: 11.435920047618103
- type: euclidean_spearman
value: 25.805458732687914
- type: manhattan_pearson
value: 15.036308569899552
- type: manhattan_spearman
value: 25.405135387192757
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (fr-pl)
config: fr-pl
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 65.44029549925597
- type: cos_sim_spearman
value: 61.97797868009122
- type: euclidean_pearson
value: 65.92740669959876
- type: euclidean_spearman
value: 61.97797868009122
- type: manhattan_pearson
value: 70.29575044091207
- type: manhattan_spearman
value: 73.24670207647144
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
metrics:
- type: cos_sim_pearson
value: 51.35413149349556
- type: cos_sim_spearman
value: 50.175051356729924
- type: euclidean_pearson
value: 53.12039152785364
- type: euclidean_spearman
value: 50.174289111089685
- type: manhattan_pearson
value: 53.0731746793555
- type: manhattan_spearman
value: 50.15176393928403
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 67.84222983023291
- type: cos_sim_spearman
value: 67.39086924655895
- type: euclidean_pearson
value: 67.3393327127967
- type: euclidean_spearman
value: 67.39088047106472
- type: manhattan_pearson
value: 67.40316731822271
- type: manhattan_spearman
value: 67.49067800994015
- task:
type: Classification
dataset:
type: ScandEval/scala-da
name: MTEB ScalaDaClassification
config: default
split: test
revision: 1de08520a7b361e92ffa2a2201ebd41942c54675
metrics:
- type: accuracy
value: 50.62988281250001
- type: ap
value: 50.32274824114816
- type: f1
value: 50.37741703766756
- task:
type: Classification
dataset:
type: ScandEval/scala-nb
name: MTEB ScalaNbClassification
config: default
split: test
revision: 237111a078ad5a834a55c57803d40bbe410ed03b
metrics:
- type: accuracy
value: 51.181640625
- type: ap
value: 50.60884394099696
- type: f1
value: 50.866988720930415
- task:
type: Classification
dataset:
type: ScandEval/scala-nn
name: MTEB ScalaNnClassification
config: default
split: test
revision: 9d9a2a4092ed3cacf0744592f6d2f32ab8ef4c0b
metrics:
- type: accuracy
value: 50.9375
- type: ap
value: 50.47969135089731
- type: f1
value: 50.62913552324756
- task:
type: Classification
dataset:
type: ScandEval/scala-sv
name: MTEB ScalaSvClassification
config: default
split: test
revision: 1b48e3dcb02872335ff985ff938a054a4ed99008
metrics:
- type: accuracy
value: 51.1474609375
- type: ap
value: 50.5894187272385
- type: f1
value: 50.901812392367916
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 68.36051662289248
- type: mrr
value: 89.39224265204656
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.721999999999998
- type: map_at_10
value: 31.335
- type: map_at_100
value: 32.461
- type: map_at_1000
value: 32.557
- type: map_at_3
value: 29.282000000000004
- type: map_at_5
value: 30.602
- type: mrr_at_1
value: 24.667
- type: mrr_at_10
value: 32.363
- type: mrr_at_100
value: 33.421
- type: mrr_at_1000
value: 33.499
- type: mrr_at_3
value: 30.444
- type: mrr_at_5
value: 31.628
- type: ndcg_at_1
value: 24.667
- type: ndcg_at_10
value: 35.29
- type: ndcg_at_100
value: 40.665
- type: ndcg_at_1000
value: 43.241
- type: ndcg_at_3
value: 31.238
- type: ndcg_at_5
value: 33.486
- type: precision_at_1
value: 24.667
- type: precision_at_10
value: 5.1
- type: precision_at_100
value: 0.7969999999999999
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_3
value: 12.667
- type: precision_at_5
value: 8.933
- type: recall_at_1
value: 23.721999999999998
- type: recall_at_10
value: 46.417
- type: recall_at_100
value: 70.944
- type: recall_at_1000
value: 91.033
- type: recall_at_3
value: 35.693999999999996
- type: recall_at_5
value: 40.944
- task:
type: Retrieval
dataset:
type: scifact-pl
name: MTEB SciFact-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.706
- type: map_at_10
value: 28.333000000000002
- type: map_at_100
value: 29.364
- type: map_at_1000
value: 29.451
- type: map_at_3
value: 26.112999999999996
- type: map_at_5
value: 27.502
- type: mrr_at_1
value: 23.0
- type: mrr_at_10
value: 29.555999999999997
- type: mrr_at_100
value: 30.536
- type: mrr_at_1000
value: 30.606
- type: mrr_at_3
value: 27.333000000000002
- type: mrr_at_5
value: 28.717
- type: ndcg_at_1
value: 23.0
- type: ndcg_at_10
value: 32.238
- type: ndcg_at_100
value: 37.785999999999994
- type: ndcg_at_1000
value: 40.266999999999996
- type: ndcg_at_3
value: 27.961000000000002
- type: ndcg_at_5
value: 30.322
- type: precision_at_1
value: 23.0
- type: precision_at_10
value: 4.7669999999999995
- type: precision_at_100
value: 0.787
- type: precision_at_1000
value: 0.10200000000000001
- type: precision_at_3
value: 11.444
- type: precision_at_5
value: 8.200000000000001
- type: recall_at_1
value: 21.706
- type: recall_at_10
value: 43.206
- type: recall_at_100
value: 69.678
- type: recall_at_1000
value: 89.333
- type: recall_at_3
value: 31.900000000000002
- type: recall_at_5
value: 37.594
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.5
- type: cos_sim_ap
value: 77.07584309978081
- type: cos_sim_f1
value: 71.8864950078823
- type: cos_sim_precision
value: 75.74750830564784
- type: cos_sim_recall
value: 68.4
- type: dot_accuracy
value: 99.5
- type: dot_ap
value: 77.07584309978081
- type: dot_f1
value: 71.8864950078823
- type: dot_precision
value: 75.74750830564784
- type: dot_recall
value: 68.4
- type: euclidean_accuracy
value: 99.5
- type: euclidean_ap
value: 77.07584309978081
- type: euclidean_f1
value: 71.8864950078823
- type: euclidean_precision
value: 75.74750830564784
- type: euclidean_recall
value: 68.4
- type: manhattan_accuracy
value: 99.50594059405941
- type: manhattan_ap
value: 77.41658577240027
- type: manhattan_f1
value: 71.91374663072777
- type: manhattan_precision
value: 78.01169590643275
- type: manhattan_recall
value: 66.7
- type: max_accuracy
value: 99.50594059405941
- type: max_ap
value: 77.41658577240027
- type: max_f1
value: 71.91374663072777
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 46.32521494308228
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 20.573273825125266
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 38.612724125942385
- type: mrr
value: 38.891130315762666
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 29.305330424238836
- type: cos_sim_spearman
value: 30.556621737388685
- type: dot_pearson
value: 29.30533056265583
- type: dot_spearman
value: 30.556621737388685
- task:
type: Classification
dataset:
type: ScandEval/swerec-mini
name: MTEB SweRecClassification
config: default
split: test
revision: 3c62f26bafdc4c4e1c16401ad4b32f0a94b46612
metrics:
- type: accuracy
value: 68.4716796875
- type: f1
value: 59.865730786092364
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
metrics:
- type: map
value: 55.34794621490011
- type: mrr
value: 59.22764129348421
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
metrics:
- type: map_at_1
value: 0.586
- type: map_at_10
value: 0.819
- type: map_at_100
value: 0.8920000000000001
- type: map_at_1000
value: 0.928
- type: map_at_3
value: 0.729
- type: map_at_5
value: 0.771
- type: mrr_at_1
value: 1.9949999999999999
- type: mrr_at_10
value: 2.608
- type: mrr_at_100
value: 2.771
- type: mrr_at_1000
value: 2.8289999999999997
- type: mrr_at_3
value: 2.365
- type: mrr_at_5
value: 2.483
- type: ndcg_at_1
value: 1.9949999999999999
- type: ndcg_at_10
value: 1.314
- type: ndcg_at_100
value: 1.831
- type: ndcg_at_1000
value: 3.4139999999999997
- type: ndcg_at_3
value: 1.377
- type: ndcg_at_5
value: 1.2630000000000001
- type: precision_at_1
value: 1.9949999999999999
- type: precision_at_10
value: 0.488
- type: precision_at_100
value: 0.123
- type: precision_at_1000
value: 0.054
- type: precision_at_3
value: 1.027
- type: precision_at_5
value: 0.737
- type: recall_at_1
value: 0.586
- type: recall_at_10
value: 1.3390000000000002
- type: recall_at_100
value: 3.15
- type: recall_at_1000
value: 11.859
- type: recall_at_3
value: 0.8710000000000001
- type: recall_at_5
value: 1.0290000000000001
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
metrics:
- type: accuracy
value: 40.946
- type: f1
value: 39.56517169731474
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.08499999999999999
- type: map_at_10
value: 0.462
- type: map_at_100
value: 0.893
- type: map_at_1000
value: 1.129
- type: map_at_3
value: 0.232
- type: map_at_5
value: 0.3
- type: mrr_at_1
value: 38.0
- type: mrr_at_10
value: 50.629999999999995
- type: mrr_at_100
value: 51.315999999999995
- type: mrr_at_1000
value: 51.365
- type: mrr_at_3
value: 47.0
- type: mrr_at_5
value: 48.9
- type: ndcg_at_1
value: 31.0
- type: ndcg_at_10
value: 24.823
- type: ndcg_at_100
value: 10.583
- type: ndcg_at_1000
value: 6.497999999999999
- type: ndcg_at_3
value: 30.95
- type: ndcg_at_5
value: 27.899
- type: precision_at_1
value: 38.0
- type: precision_at_10
value: 25.6
- type: precision_at_100
value: 8.98
- type: precision_at_1000
value: 2.248
- type: precision_at_3
value: 34.666999999999994
- type: precision_at_5
value: 29.599999999999998
- type: recall_at_1
value: 0.08499999999999999
- type: recall_at_10
value: 0.641
- type: recall_at_100
value: 2.002
- type: recall_at_1000
value: 4.902
- type: recall_at_3
value: 0.28200000000000003
- type: recall_at_5
value: 0.379
- task:
type: Retrieval
dataset:
type: trec-covid-pl
name: MTEB TRECCOVID-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.124
- type: map_at_10
value: 0.45199999999999996
- type: map_at_100
value: 0.874
- type: map_at_1000
value: 1.1039999999999999
- type: map_at_3
value: 0.253
- type: map_at_5
value: 0.32299999999999995
- type: mrr_at_1
value: 36.0
- type: mrr_at_10
value: 47.56
- type: mrr_at_100
value: 48.532
- type: mrr_at_1000
value: 48.579
- type: mrr_at_3
value: 45.0
- type: mrr_at_5
value: 45.5
- type: ndcg_at_1
value: 34.0
- type: ndcg_at_10
value: 24.529
- type: ndcg_at_100
value: 10.427
- type: ndcg_at_1000
value: 6.457
- type: ndcg_at_3
value: 31.173000000000002
- type: ndcg_at_5
value: 27.738000000000003
- type: precision_at_1
value: 38.0
- type: precision_at_10
value: 25.4
- type: precision_at_100
value: 8.88
- type: precision_at_1000
value: 2.2159999999999997
- type: precision_at_3
value: 34.666999999999994
- type: precision_at_5
value: 29.2
- type: recall_at_1
value: 0.124
- type: recall_at_10
value: 0.618
- type: recall_at_100
value: 1.9349999999999998
- type: recall_at_1000
value: 4.808
- type: recall_at_3
value: 0.28300000000000003
- type: recall_at_5
value: 0.382
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (sqi-eng)
config: sqi-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.9
- type: f1
value: 98.55000000000001
- type: precision
value: 98.38333333333334
- type: recall
value: 98.9
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (fry-eng)
config: fry-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 65.3179190751445
- type: f1
value: 59.44582071749702
- type: precision
value: 57.49678869621066
- type: recall
value: 65.3179190751445
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kur-eng)
config: kur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 38.53658536585366
- type: f1
value: 34.217555952803785
- type: precision
value: 32.96511296649355
- type: recall
value: 38.53658536585366
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tur-eng)
config: tur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.7
- type: f1
value: 98.26666666666665
- type: precision
value: 98.05
- type: recall
value: 98.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (deu-eng)
config: deu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 99.3
- type: f1
value: 99.13333333333333
- type: precision
value: 99.05000000000001
- type: recall
value: 99.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nld-eng)
config: nld-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.89999999999999
- type: f1
value: 97.2
- type: precision
value: 96.85000000000001
- type: recall
value: 97.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ron-eng)
config: ron-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2
- type: f1
value: 97.6
- type: precision
value: 97.3
- type: recall
value: 98.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ang-eng)
config: ang-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 52.23880597014925
- type: f1
value: 46.340992406389105
- type: precision
value: 44.556384742951906
- type: recall
value: 52.23880597014925
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ido-eng)
config: ido-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.0
- type: f1
value: 93.67000000000002
- type: precision
value: 93.075
- type: recall
value: 95.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (jav-eng)
config: jav-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.29268292682927
- type: f1
value: 85.76422764227642
- type: precision
value: 84.84204413472706
- type: recall
value: 88.29268292682927
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (isl-eng)
config: isl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.2
- type: f1
value: 96.46666666666667
- type: precision
value: 96.1
- type: recall
value: 97.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (slv-eng)
config: slv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.8408262454435
- type: f1
value: 95.9902794653706
- type: precision
value: 95.56500607533415
- type: recall
value: 96.8408262454435
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cym-eng)
config: cym-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.3913043478261
- type: f1
value: 91.30434782608695
- type: precision
value: 90.28985507246377
- type: recall
value: 93.3913043478261
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kaz-eng)
config: kaz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.6086956521739
- type: f1
value: 88.1159420289855
- type: precision
value: 86.9623188405797
- type: recall
value: 90.6086956521739
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (est-eng)
config: est-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.16666666666667
- type: precision
value: 96.86666666666667
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (heb-eng)
config: heb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.0
- type: f1
value: 92.34
- type: precision
value: 91.54166666666667
- type: recall
value: 94.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (gla-eng)
config: gla-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.92159227985525
- type: f1
value: 80.8868975817106
- type: precision
value: 79.11540008041817
- type: recall
value: 84.92159227985525
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mar-eng)
config: mar-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.89999999999999
- type: f1
value: 93.35
- type: precision
value: 92.58333333333334
- type: recall
value: 94.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (lat-eng)
config: lat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 43.3
- type: f1
value: 36.64473116255726
- type: precision
value: 34.64017752457381
- type: recall
value: 43.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (bel-eng)
config: bel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.7
- type: f1
value: 95.68333333333332
- type: precision
value: 95.19999999999999
- type: recall
value: 96.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (pms-eng)
config: pms-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 70.47619047619048
- type: f1
value: 66.63032734461306
- type: precision
value: 65.46459191863879
- type: recall
value: 70.47619047619048
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (gle-eng)
config: gle-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.5
- type: f1
value: 91.63
- type: precision
value: 90.75
- type: recall
value: 93.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (pes-eng)
config: pes-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.5
- type: f1
value: 94.36666666666666
- type: precision
value: 93.83333333333333
- type: recall
value: 95.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nob-eng)
config: nob-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 99.3
- type: f1
value: 99.06666666666666
- type: precision
value: 98.95
- type: recall
value: 99.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (bul-eng)
config: bul-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.8
- type: f1
value: 94.51666666666667
- type: precision
value: 93.88333333333334
- type: recall
value: 95.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cbk-eng)
config: cbk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.0
- type: f1
value: 80.46675324675326
- type: precision
value: 78.95999999999998
- type: recall
value: 84.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hun-eng)
config: hun-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 96.93333333333332
- type: precision
value: 96.55
- type: recall
value: 97.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (uig-eng)
config: uig-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.10000000000001
- type: f1
value: 90.07333333333334
- type: precision
value: 89.16166666666668
- type: recall
value: 92.10000000000001
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (rus-eng)
config: rus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.6
- type: f1
value: 94.35
- type: precision
value: 93.75
- type: recall
value: 95.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (spa-eng)
config: spa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.9
- type: f1
value: 98.53333333333335
- type: precision
value: 98.35000000000001
- type: recall
value: 98.9
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hye-eng)
config: hye-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.22641509433963
- type: f1
value: 95.14824797843666
- type: precision
value: 94.60916442048517
- type: recall
value: 96.22641509433963
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tel-eng)
config: tel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.58974358974359
- type: f1
value: 91.59544159544159
- type: precision
value: 90.66951566951566
- type: recall
value: 93.58974358974359
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (afr-eng)
config: afr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.1
- type: f1
value: 97.46666666666668
- type: precision
value: 97.15
- type: recall
value: 98.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mon-eng)
config: mon-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.4090909090909
- type: f1
value: 91.5909090909091
- type: precision
value: 90.71969696969697
- type: recall
value: 93.4090909090909
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (arz-eng)
config: arz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.51781970649894
- type: f1
value: 86.76150544075072
- type: precision
value: 85.55206149545772
- type: recall
value: 89.51781970649894
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hrv-eng)
config: hrv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2
- type: f1
value: 97.65
- type: precision
value: 97.38333333333333
- type: recall
value: 98.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nov-eng)
config: nov-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 75.87548638132296
- type: f1
value: 71.24698906800073
- type: precision
value: 69.66572338167668
- type: recall
value: 75.87548638132296
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (gsw-eng)
config: gsw-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 61.53846153846154
- type: f1
value: 54.83234714003944
- type: precision
value: 52.06552706552707
- type: recall
value: 61.53846153846154
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nds-eng)
config: nds-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 59.199999999999996
- type: f1
value: 54.183211233211225
- type: precision
value: 52.48751719986241
- type: recall
value: 59.199999999999996
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ukr-eng)
config: ukr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.6
- type: f1
value: 94.3
- type: precision
value: 93.65
- type: recall
value: 95.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (uzb-eng)
config: uzb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.85046728971963
- type: f1
value: 85.25700934579439
- type: precision
value: 84.09267912772586
- type: recall
value: 87.85046728971963
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (lit-eng)
config: lit-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.0
- type: f1
value: 97.43333333333332
- type: precision
value: 97.15
- type: recall
value: 98.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ina-eng)
config: ina-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.8
- type: f1
value: 88.66055555555555
- type: precision
value: 87.81845238095238
- type: recall
value: 90.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (lfn-eng)
config: lfn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 70.6
- type: f1
value: 65.538895353013
- type: precision
value: 63.69531394330308
- type: recall
value: 70.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (zsm-eng)
config: zsm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.89999999999999
- type: f1
value: 96.06666666666668
- type: precision
value: 95.68333333333334
- type: recall
value: 96.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ita-eng)
config: ita-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.8
- type: f1
value: 95.95
- type: precision
value: 95.55
- type: recall
value: 96.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cmn-eng)
config: cmn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.19999999999999
- type: f1
value: 93.8
- type: precision
value: 93.13333333333334
- type: recall
value: 95.19999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (lvs-eng)
config: lvs-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.5
- type: f1
value: 95.45
- type: precision
value: 94.93333333333334
- type: recall
value: 96.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (glg-eng)
config: glg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.89999999999999
- type: f1
value: 97.28333333333332
- type: precision
value: 96.98333333333333
- type: recall
value: 97.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ceb-eng)
config: ceb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 78.16666666666666
- type: f1
value: 74.67336721249764
- type: precision
value: 73.26035353535354
- type: recall
value: 78.16666666666666
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (bre-eng)
config: bre-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 11.200000000000001
- type: f1
value: 8.48123815073815
- type: precision
value: 7.843657708032708
- type: recall
value: 11.200000000000001
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ben-eng)
config: ben-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.3
- type: f1
value: 89.02333333333333
- type: precision
value: 87.97500000000001
- type: recall
value: 91.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (swg-eng)
config: swg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 72.32142857142857
- type: f1
value: 67.69209956709956
- type: precision
value: 66.19047619047619
- type: recall
value: 72.32142857142857
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (arq-eng)
config: arq-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 79.69264544456641
- type: f1
value: 75.40693115885212
- type: precision
value: 73.67544822539335
- type: recall
value: 79.69264544456641
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kab-eng)
config: kab-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.8
- type: f1
value: 83.65666666666667
- type: precision
value: 82.24833333333333
- type: recall
value: 86.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (fra-eng)
config: fra-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.39999999999999
- type: f1
value: 95.36666666666666
- type: precision
value: 94.86666666666666
- type: recall
value: 96.39999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (por-eng)
config: por-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.3
- type: f1
value: 95.49
- type: precision
value: 95.10833333333333
- type: recall
value: 96.3
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tat-eng)
config: tat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.60000000000001
- type: f1
value: 87.04746031746032
- type: precision
value: 85.89583333333333
- type: recall
value: 89.60000000000001
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (oci-eng)
config: oci-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.9
- type: f1
value: 84.57088023088022
- type: precision
value: 83.6475
- type: recall
value: 86.9
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (pol-eng)
config: pol-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2
- type: f1
value: 97.7
- type: precision
value: 97.46666666666668
- type: recall
value: 98.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (war-eng)
config: war-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.39999999999999
- type: f1
value: 82.83333333333333
- type: precision
value: 81.80137426900586
- type: recall
value: 85.39999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (aze-eng)
config: aze-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.4
- type: f1
value: 89.11999999999999
- type: precision
value: 88.12777777777778
- type: recall
value: 91.4
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (vie-eng)
config: vie-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.16666666666669
- type: precision
value: 96.85000000000001
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (nno-eng)
config: nno-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.89999999999999
- type: f1
value: 97.30666666666666
- type: precision
value: 97.02499999999999
- type: recall
value: 97.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cha-eng)
config: cha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 27.00729927007299
- type: f1
value: 25.114895917815623
- type: precision
value: 24.602283361407448
- type: recall
value: 27.00729927007299
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mhr-eng)
config: mhr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 14.099999999999998
- type: f1
value: 11.869284007509814
- type: precision
value: 11.199695454818405
- type: recall
value: 14.099999999999998
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (dan-eng)
config: dan-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 97.09
- type: precision
value: 96.80833333333332
- type: recall
value: 97.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ell-eng)
config: ell-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.5
- type: f1
value: 95.47333333333333
- type: precision
value: 94.975
- type: recall
value: 96.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (amh-eng)
config: amh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.45238095238095
- type: f1
value: 91.66666666666666
- type: precision
value: 90.77380952380952
- type: recall
value: 93.45238095238095
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (pam-eng)
config: pam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 11.899999999999999
- type: f1
value: 10.303261315113037
- type: precision
value: 9.902986584515606
- type: recall
value: 11.899999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hsb-eng)
config: hsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81.57349896480332
- type: f1
value: 77.86519438693352
- type: precision
value: 76.35595081247254
- type: recall
value: 81.57349896480332
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (srp-eng)
config: srp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.1
- type: f1
value: 94.86666666666667
- type: precision
value: 94.25
- type: recall
value: 96.1
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (epo-eng)
config: epo-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.8
- type: f1
value: 98.46666666666667
- type: precision
value: 98.3
- type: recall
value: 98.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kzj-eng)
config: kzj-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 10.7
- type: f1
value: 8.621683883854935
- type: precision
value: 8.188292731521031
- type: recall
value: 10.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (awa-eng)
config: awa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.47619047619048
- type: f1
value: 87.8581735724593
- type: precision
value: 86.72438672438673
- type: recall
value: 90.47619047619048
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (fao-eng)
config: fao-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.0381679389313
- type: f1
value: 93.60050890585242
- type: precision
value: 92.970737913486
- type: recall
value: 95.0381679389313
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mal-eng)
config: mal-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2532751091703
- type: f1
value: 97.67103347889375
- type: precision
value: 97.37991266375546
- type: recall
value: 98.2532751091703
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ile-eng)
config: ile-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.6
- type: f1
value: 80.99904761904763
- type: precision
value: 79.54634920634919
- type: recall
value: 84.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (bos-eng)
config: bos-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.89265536723164
- type: f1
value: 95.90395480225989
- type: precision
value: 95.4331450094162
- type: recall
value: 96.89265536723164
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cor-eng)
config: cor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 12.6
- type: f1
value: 9.981918087824628
- type: precision
value: 9.326319147606549
- type: recall
value: 12.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (cat-eng)
config: cat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.39999999999999
- type: f1
value: 96.65
- type: precision
value: 96.28333333333333
- type: recall
value: 97.39999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (eus-eng)
config: eus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.5
- type: f1
value: 95.38333333333333
- type: precision
value: 94.83333333333333
- type: recall
value: 96.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (yue-eng)
config: yue-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.8
- type: f1
value: 88.43666666666665
- type: precision
value: 87.395
- type: recall
value: 90.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (swe-eng)
config: swe-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 97.03333333333333
- type: precision
value: 96.71666666666667
- type: recall
value: 97.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (dtp-eng)
config: dtp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 9.4
- type: f1
value: 7.946889105220061
- type: precision
value: 7.665059865752875
- type: recall
value: 9.4
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kat-eng)
config: kat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.04021447721179
- type: f1
value: 93.68632707774799
- type: precision
value: 93.08534405719392
- type: recall
value: 95.04021447721179
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (jpn-eng)
config: jpn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.89999999999999
- type: f1
value: 94.66666666666667
- type: precision
value: 94.08333333333334
- type: recall
value: 95.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (csb-eng)
config: csb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.6086956521739
- type: f1
value: 77.98418972332016
- type: precision
value: 75.96837944664031
- type: recall
value: 82.6086956521739
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (xho-eng)
config: xho-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.77464788732394
- type: f1
value: 94.8356807511737
- type: precision
value: 94.36619718309859
- type: recall
value: 95.77464788732394
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (orv-eng)
config: orv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 53.17365269461077
- type: f1
value: 47.07043056743655
- type: precision
value: 45.161363241830784
- type: recall
value: 53.17365269461077
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ind-eng)
config: ind-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.5
- type: f1
value: 94.5
- type: precision
value: 94.03333333333333
- type: recall
value: 95.5
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tuk-eng)
config: tuk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.59605911330048
- type: f1
value: 91.82266009852216
- type: precision
value: 91.09195402298852
- type: recall
value: 93.59605911330048
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (max-eng)
config: max-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.40845070422534
- type: f1
value: 72.73082942097027
- type: precision
value: 71.46686939820742
- type: recall
value: 76.40845070422534
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (swh-eng)
config: swh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.58974358974359
- type: f1
value: 91.98290598290598
- type: precision
value: 91.3119658119658
- type: recall
value: 93.58974358974359
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (hin-eng)
config: hin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.06666666666668
- type: precision
value: 96.7
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (dsb-eng)
config: dsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 68.89352818371609
- type: f1
value: 64.47860652453555
- type: precision
value: 62.878651918592574
- type: recall
value: 68.89352818371609
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ber-eng)
config: ber-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 33.800000000000004
- type: f1
value: 29.290774344112368
- type: precision
value: 28.066016735704647
- type: recall
value: 33.800000000000004
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tam-eng)
config: tam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.22801302931596
- type: f1
value: 88.07817589576547
- type: precision
value: 87.171552660152
- type: recall
value: 90.22801302931596
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (slk-eng)
config: slk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2
- type: f1
value: 97.63333333333334
- type: precision
value: 97.36666666666667
- type: recall
value: 98.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tgl-eng)
config: tgl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 96.95
- type: precision
value: 96.58333333333331
- type: recall
value: 97.7
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ast-eng)
config: ast-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.91338582677166
- type: f1
value: 90.81364829396327
- type: precision
value: 89.89501312335958
- type: recall
value: 92.91338582677166
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (mkd-eng)
config: mkd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.89999999999999
- type: f1
value: 95.98333333333332
- type: precision
value: 95.56666666666668
- type: recall
value: 96.89999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (khm-eng)
config: khm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74.51523545706371
- type: f1
value: 70.20346919931407
- type: precision
value: 68.6389565788895
- type: recall
value: 74.51523545706371
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ces-eng)
config: ces-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.6
- type: f1
value: 96.88333333333333
- type: precision
value: 96.53333333333333
- type: recall
value: 97.6
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tzl-eng)
config: tzl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 46.15384615384615
- type: f1
value: 39.47885447885448
- type: precision
value: 37.301528599605525
- type: recall
value: 46.15384615384615
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (urd-eng)
config: urd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.69999999999999
- type: f1
value: 93.16666666666667
- type: precision
value: 92.41666666666667
- type: recall
value: 94.69999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (ara-eng)
config: ara-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.19999999999999
- type: f1
value: 93.83333333333333
- type: precision
value: 93.16666666666667
- type: recall
value: 95.19999999999999
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (kor-eng)
config: kor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.0
- type: f1
value: 89.98666666666666
- type: precision
value: 89.09166666666667
- type: recall
value: 92.0
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (yid-eng)
config: yid-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.51886792452831
- type: f1
value: 94.3003144654088
- type: precision
value: 93.75
- type: recall
value: 95.51886792452831
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (fin-eng)
config: fin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2
- type: f1
value: 97.83333333333333
- type: precision
value: 97.65
- type: recall
value: 98.2
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (tha-eng)
config: tha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.8978102189781
- type: f1
value: 96.04622871046227
- type: precision
value: 95.62043795620438
- type: recall
value: 96.8978102189781
- task:
type: BitextMining
dataset:
type: mteb/tatoeba-bitext-mining
name: MTEB Tatoeba (wuu-eng)
config: wuu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.1
- type: f1
value: 81.78564213564214
- type: precision
value: 80.46416666666667
- type: recall
value: 85.1
- task:
type: Clustering
dataset:
type: slvnwhrl/tenkgnad-clustering-p2p
name: MTEB TenKGnadClusteringP2P
config: default
split: test
revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
metrics:
- type: v_measure
value: 21.827519839402644
- task:
type: Clustering
dataset:
type: slvnwhrl/tenkgnad-clustering-s2s
name: MTEB TenKGnadClusteringS2S
config: default
split: test
revision: 6cddbe003f12b9b140aec477b583ac4191f01786
metrics:
- type: v_measure
value: 27.160188241713684
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
metrics:
- type: v_measure
value: 38.54459276932986
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
metrics:
- type: v_measure
value: 43.4460576234314
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.20500000000000002
- type: map_at_10
value: 0.391
- type: map_at_100
value: 0.612
- type: map_at_1000
value: 0.645
- type: map_at_3
value: 0.302
- type: map_at_5
value: 0.383
- type: mrr_at_1
value: 4.082
- type: mrr_at_10
value: 5.612
- type: mrr_at_100
value: 6.822
- type: mrr_at_1000
value: 6.929
- type: mrr_at_3
value: 4.082
- type: mrr_at_5
value: 5.408
- type: ndcg_at_1
value: 4.082
- type: ndcg_at_10
value: 1.6840000000000002
- type: ndcg_at_100
value: 2.876
- type: ndcg_at_1000
value: 4.114
- type: ndcg_at_3
value: 2.52
- type: ndcg_at_5
value: 2.3720000000000003
- type: precision_at_1
value: 4.082
- type: precision_at_10
value: 1.429
- type: precision_at_100
value: 0.755
- type: precision_at_1000
value: 0.18
- type: precision_at_3
value: 2.041
- type: precision_at_5
value: 2.4490000000000003
- type: recall_at_1
value: 0.20500000000000002
- type: recall_at_10
value: 0.761
- type: recall_at_100
value: 4.423
- type: recall_at_1000
value: 9.044
- type: recall_at_3
value: 0.302
- type: recall_at_5
value: 0.683
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 67.28359999999999
- type: ap
value: 12.424592214862038
- type: f1
value: 51.53630450055703
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 56.23372948500284
- type: f1
value: 56.440924587214234
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 24.410059815620116
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 80.3302139834297
- type: cos_sim_ap
value: 53.57723069745093
- type: cos_sim_f1
value: 51.58639580004565
- type: cos_sim_precision
value: 45.45454545454545
- type: cos_sim_recall
value: 59.63060686015831
- type: dot_accuracy
value: 80.3302139834297
- type: dot_ap
value: 53.57723006705641
- type: dot_f1
value: 51.58639580004565
- type: dot_precision
value: 45.45454545454545
- type: dot_recall
value: 59.63060686015831
- type: euclidean_accuracy
value: 80.3302139834297
- type: euclidean_ap
value: 53.57723050286929
- type: euclidean_f1
value: 51.58639580004565
- type: euclidean_precision
value: 45.45454545454545
- type: euclidean_recall
value: 59.63060686015831
- type: manhattan_accuracy
value: 80.31233235977827
- type: manhattan_ap
value: 53.44943961562638
- type: manhattan_f1
value: 51.24183006535947
- type: manhattan_precision
value: 43.63636363636363
- type: manhattan_recall
value: 62.05804749340369
- type: max_accuracy
value: 80.3302139834297
- type: max_ap
value: 53.57723069745093
- type: max_f1
value: 51.58639580004565
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 87.45876508712695
- type: cos_sim_ap
value: 83.5320716566614
- type: cos_sim_f1
value: 75.54560716284276
- type: cos_sim_precision
value: 73.27929362379678
- type: cos_sim_recall
value: 77.95657530027718
- type: dot_accuracy
value: 87.45876508712695
- type: dot_ap
value: 83.53209944887666
- type: dot_f1
value: 75.54560716284276
- type: dot_precision
value: 73.27929362379678
- type: dot_recall
value: 77.95657530027718
- type: euclidean_accuracy
value: 87.45876508712695
- type: euclidean_ap
value: 83.53205938307582
- type: euclidean_f1
value: 75.54560716284276
- type: euclidean_precision
value: 73.27929362379678
- type: euclidean_recall
value: 77.95657530027718
- type: manhattan_accuracy
value: 87.52280048123569
- type: manhattan_ap
value: 83.4884324728773
- type: manhattan_f1
value: 75.43366677906411
- type: manhattan_precision
value: 73.46566445303948
- type: manhattan_recall
value: 77.51000923929782
- type: max_accuracy
value: 87.52280048123569
- type: max_ap
value: 83.53209944887666
- type: max_f1
value: 75.54560716284276
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
metrics:
- type: map_at_1
value: 13.100000000000001
- type: map_at_10
value: 15.620000000000001
- type: map_at_100
value: 15.928
- type: map_at_1000
value: 15.976
- type: map_at_3
value: 14.817
- type: map_at_5
value: 15.322
- type: mrr_at_1
value: 13.0
- type: mrr_at_10
value: 15.57
- type: mrr_at_100
value: 15.878
- type: mrr_at_1000
value: 15.926000000000002
- type: mrr_at_3
value: 14.767
- type: mrr_at_5
value: 15.272
- type: ndcg_at_1
value: 13.100000000000001
- type: ndcg_at_10
value: 17.05
- type: ndcg_at_100
value: 18.801000000000002
- type: ndcg_at_1000
value: 20.436
- type: ndcg_at_3
value: 15.425
- type: ndcg_at_5
value: 16.333000000000002
- type: precision_at_1
value: 13.100000000000001
- type: precision_at_10
value: 2.16
- type: precision_at_100
value: 0.304
- type: precision_at_1000
value: 0.044000000000000004
- type: precision_at_3
value: 5.733
- type: precision_at_5
value: 3.88
- type: recall_at_1
value: 13.100000000000001
- type: recall_at_10
value: 21.6
- type: recall_at_100
value: 30.4
- type: recall_at_1000
value: 44.1
- type: recall_at_3
value: 17.2
- type: recall_at_5
value: 19.400000000000002
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: 339287def212450dcaa9df8c22bf93e9980c7023
metrics:
- type: accuracy
value: 76.12
- type: ap
value: 54.1619589378045
- type: f1
value: 74.32372858884229
- task:
type: Clustering
dataset:
type: jinaai/cities_wiki_clustering
name: MTEB WikiCitiesClustering
config: default
split: test
revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
metrics:
- type: v_measure
value: 50.71744674029636
- task:
type: Retrieval
dataset:
type: jinaai/xmarket_de
name: MTEB XMarketDE
config: default
split: test
revision: 2336818db4c06570fcdf263e1bcb9993b786f67a
metrics:
- type: map_at_1
value: 0.182
- type: map_at_10
value: 0.266
- type: map_at_100
value: 0.295
- type: map_at_1000
value: 0.313
- type: map_at_3
value: 0.232
- type: map_at_5
value: 0.23800000000000002
- type: mrr_at_1
value: 1.3379999999999999
- type: mrr_at_10
value: 1.918
- type: mrr_at_100
value: 2.051
- type: mrr_at_1000
value: 2.084
- type: mrr_at_3
value: 1.7049999999999998
- type: mrr_at_5
value: 1.791
- type: ndcg_at_1
value: 1.3379999999999999
- type: ndcg_at_10
value: 0.859
- type: ndcg_at_100
value: 0.8500000000000001
- type: ndcg_at_1000
value: 1.345
- type: ndcg_at_3
value: 1.032
- type: ndcg_at_5
value: 0.918
- type: precision_at_1
value: 1.3379999999999999
- type: precision_at_10
value: 0.528
- type: precision_at_100
value: 0.22699999999999998
- type: precision_at_1000
value: 0.132
- type: precision_at_3
value: 0.8829999999999999
- type: precision_at_5
value: 0.6890000000000001
- type: recall_at_1
value: 0.182
- type: recall_at_10
value: 0.51
- type: recall_at_100
value: 1.2229999999999999
- type: recall_at_1000
value: 4.183
- type: recall_at_3
value: 0.292
- type: recall_at_5
value: 0.315
---
# SONAR
[[Paper]](https://ai.meta.com/research/publications/sonar-sentence-level-multimodal-and-language-agnostic-representations/)
We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders. It substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks.
Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. We also provide a single text decoder, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations.
*SONAR* stands for **S**entence-level multim**O**dal and la**N**guage-**A**gnostic **R**epresentations
The full list of supported languages (along with download links) can be found here [below](#supported-languages-and-download-links).
## Installing
SONAR depends mainly on [Fairseq2](https://github.com/fairinternal/fairseq2) and can be installed using (tested with `python=3.8`)
```bash
pip install --upgrade pip
pip config set global.extra-index-url https://test.pypi.org/simple/
pip install -e .
```
## Usage
fairseq2 will automatically download models into your `$TORCH_HOME/hub` directory upon using the commands below.
### Compute text sentence embeddings with SONAR:
```python
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
t2vec_model = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder",
tokenizer="text_sonar_basic_encoder")
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
t2vec_model.predict(sentences, source_lang="eng_Latn").shape
# torch.Size([2, 1024])
```
### Translate text with SONAR
```python
from sonar.inference_pipelines.text import TextToTextModelPipeline
t2t_model = TextToTextModelPipeline(encoder="text_sonar_basic_encoder",
decoder="text_sonar_basic_decoder",
tokenizer="text_sonar_basic_encoder") # tokenizer is attached to both encoder and decoder cards
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
t2t_model.predict(sentences, source_lang="eng_Latn", target_lang="fra_Latn")
# ['Mon nom est SONAR.', "Je peux intégrer les phrases dans l'espace vectoriel."]
```
### Compute speech sentence embeddings with SONAR
```python
from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline
s2vec_model = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng")
s2vec_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
"./tests/integration_tests/data/audio_files/audio_2.wav"]).shape
# torch.Size([2, 1024])
import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"
s2vec_model.predict([inp]).shape
# torch.Size([1, 1024])
```
### Speech-to-text translation with SONAR
```python
from sonar.inference_pipelines.speech import SpeechToTextModelPipeline
s2t_model = SpeechToTextModelPipeline(encoder="sonar_speech_encoder_eng",
decoder="text_sonar_basic_decoder",
tokenizer="text_sonar_basic_decoder")
import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"
# passing loaded audio files
s2t_model.predict([inp], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.']
# passing multiple wav files
s2t_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
"./tests/integration_tests/data/audio_files/audio_2.wav"], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.',
# 'These couples may choose to make an adoption plan for their baby.']
```
### Predicting [cross-lingual semantic similarity](https://github.com/facebookresearch/fairseq/tree/nllb/examples/nllb/human_XSTS_eval) with BLASER 2 models
```Python
import torch
from sonar.models.blaser.loader import load_blaser_model
blaser_ref = load_blaser_model("blaser_st2st_ref_v2_0").eval()
blaser_qe = load_blaser_model("blaser_st2st_qe_v2_0").eval()
# BLASER-2 is supposed to work with SONAR speech and text embeddings,
# but we didn't include their extraction in this snippet, to keep it simple.
emb = torch.ones([1, 1024])
print(blaser_ref(src=emb, ref=emb, mt=emb).item()) # 5.2552
print(blaser_qe(src=emb, mt=emb).item()) # 4.9819
```
See more complete demo notebooks :
* [sonar text2text similarity and translation](examples/sonar_text_demo.ipynb)
* [sonar speech2text and other data pipeline examples](examples/inference_pipelines.ipynb)
## Model details
- **Developed by:** Paul-Ambroise Duquenne et al.
- **License:** CC-BY-NC 4.0 license
- **Cite as:**
```
@article{Duquenne:2023:sonar_arxiv,
author = {Paul-Ambroise Duquenne and Holger Schwenk and Benoit Sagot},
title = {{SONAR:} Sentence-Level Multimodal and Language-Agnostic Representations},
publisher = {arXiv},
year = {2023},
url = {https://arxiv.org/abs/unk},
}
```