|
--- |
|
tags: |
|
- mms |
|
language: |
|
- ab |
|
- af |
|
- ak |
|
- am |
|
- ar |
|
- as |
|
- av |
|
- ay |
|
- az |
|
- ba |
|
- bm |
|
- be |
|
- bn |
|
- bi |
|
- bo |
|
- sh |
|
- br |
|
- bg |
|
- ca |
|
- cs |
|
- ce |
|
- cv |
|
- ku |
|
- cy |
|
- da |
|
- de |
|
- dv |
|
- dz |
|
- el |
|
- en |
|
- eo |
|
- et |
|
- eu |
|
- ee |
|
- fo |
|
- fa |
|
- fj |
|
- fi |
|
- fr |
|
- fy |
|
- ff |
|
- ga |
|
- gl |
|
- gn |
|
- gu |
|
- zh |
|
- ht |
|
- ha |
|
- he |
|
- hi |
|
- sh |
|
- hu |
|
- hy |
|
- ig |
|
- ia |
|
- ms |
|
- is |
|
- it |
|
- jv |
|
- ja |
|
- kn |
|
- ka |
|
- kk |
|
- kr |
|
- km |
|
- ki |
|
- rw |
|
- ky |
|
- ko |
|
- kv |
|
- lo |
|
- la |
|
- lv |
|
- ln |
|
- lt |
|
- lb |
|
- lg |
|
- mh |
|
- ml |
|
- mr |
|
- ms |
|
- mk |
|
- mg |
|
- mt |
|
- mn |
|
- mi |
|
- my |
|
- zh |
|
- nl |
|
- 'no' |
|
- 'no' |
|
- ne |
|
- ny |
|
- oc |
|
- om |
|
- or |
|
- os |
|
- pa |
|
- pl |
|
- pt |
|
- ms |
|
- ps |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- qu |
|
- ro |
|
- rn |
|
- ru |
|
- sg |
|
- sk |
|
- sl |
|
- sm |
|
- sn |
|
- sd |
|
- so |
|
- es |
|
- sq |
|
- su |
|
- sv |
|
- sw |
|
- ta |
|
- tt |
|
- te |
|
- tg |
|
- tl |
|
- th |
|
- ti |
|
- ts |
|
- tr |
|
- uk |
|
- ms |
|
- vi |
|
- wo |
|
- xh |
|
- ms |
|
- yo |
|
- ms |
|
- zu |
|
- za |
|
license: cc-by-nc-4.0 |
|
datasets: |
|
- google/fleurs |
|
metrics: |
|
- wer |
|
--- |
|
|
|
# Massively Multilingual Speech (MMS) - 300m |
|
|
|
Facebook's MMS counting *300m* parameters. |
|
|
|
MMS is Facebook AI's massive multilingual pretrained model for speech ("MMS"). |
|
It is pretrained in with [Wav2Vec2's self-supervised training objective](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) on about 500,000 hours of speech data in over 1,400 languages. |
|
|
|
When using the model make sure that your speech input is sampled at 16kHz. |
|
|
|
**Note**: This model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Translation, or Classification. Check out the [**How-to-fine section](#how-to-finetune) or [**this blog**](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for more information about ASR. |
|
|
|
## Table Of Content |
|
|
|
- [How to Finetune](#how-to-finetune) |
|
- [Model details](#model-details) |
|
- [Additional links](#additional-links) |
|
|
|
## How to finetune |
|
|
|
Coming soon... |
|
|
|
## Model details |
|
|
|
- **Developed by:** Vineel Pratap et al. |
|
- **Model type:** Multi-Lingual Automatic Speech Recognition model |
|
- **Language(s):** 1000+ languages |
|
- **License:** CC-BY-NC 4.0 license |
|
- **Num parameters**: 300 million |
|
- **Cite as:** |
|
|
|
@article{pratap2023mms, |
|
title={Scaling Speech Technology to 1,000+ Languages}, |
|
author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, |
|
journal={arXiv}, |
|
year={2023} |
|
} |
|
|
|
## Additional Links |
|
|
|
- [Blog post]( ) |
|
- [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms). |
|
- [Paper](https://arxiv.org/abs/2305.13516) |
|
- [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr) |
|
- [Other **MMS** checkpoints](https://huggingface.co/models?other=mms) |
|
- MMS ASR fine-tuned checkpoints: |
|
- [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) |
|
- [facebook/mms-1b-l1107](https://huggingface.co/facebook/mms-1b-l1107) |
|
- [facebook/mms-1b-fl102](https://huggingface.co/facebook/mms-1b-fl102) |
|
- [Official Space](https://huggingface.co/spaces/facebook/MMS) |
|
|