metadata
library_name: fairseq
task: audio-to-audio
tags:
- fairseq
- audio
- audio-to-audio
- speech-to-speech-translation
datasets:
- mtedx
- covost2
- europarl_st
- voxpopuli
widget:
- example_title: Common Voice sample 1
src: >-
https://huggingface.co/facebook/xm_transformer_600m-es_en-multi_domain/resolve/main/common_voice_es_19966634.flac
xm_transformer_600m-es_en-multi_domain
W2V2-Transformer speech-to-text translation model from fairseq S2T (paper/code):
- Spanish-English
- Trained on mTEDx, CoVoST 2, EuroParl-ST, VoxPopuli, Multilingual LibriSpeech, Common Voice v7 and CCMatrix
- Speech synthesis with facebook/fastspeech2-en-ljspeech
Usage
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import S2THubInterface
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
import torchaudio
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/xm_transformer_600m-es_en-multi_domain",
arg_overrides={"config_yaml": "config.yaml"},
)
model = models[0]
generator = task.build_generator(model, cfg)
# requires 16000Hz mono channel audio
audio, _ = torchaudio.load("/path/to/an/audio/file")
sample = S2THubInterface.get_model_input(task, audio)
text = S2THubInterface.get_prediction(task, model, generator, sample)
# speech synthesis
tts_models, tts_cfg, tts_task = load_model_ensemble_and_task_from_hf_hub(
f"facebook/fastspeech2-en-ljspeech",
arg_overrides={"vocoder": "griffin_lim", "fp16": False},
)
tts_model = tts_models[0]
TTSHubInterface.update_cfg_with_data_cfg(tts_cfg, tts_task.data_cfg)
tts_generator = tts_task.build_generator([tts_model], tts_cfg)
tts_sample = TTSHubInterface.get_model_input(tts_task, text)
wav, sr = TTSHubInterface.get_prediction(
tts_task, tts_model, tts_generator, tts_sample
)
ipd.Audio(wav, rate=rate)