faezehHZ's picture
faezehHZ/distilbert-base-uncased-lora-text-classification
e4e1f25 verified
|
raw
history blame
2.17 kB
metadata
base_model: distilbert-base-uncased
library_name: peft
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0878
  • Accuracy: {'accuracy': 0.88}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3774 {'accuracy': 0.863}
0.3793 2.0 500 0.3980 {'accuracy': 0.884}
0.3793 3.0 750 0.6004 {'accuracy': 0.885}
0.1356 4.0 1000 0.7604 {'accuracy': 0.884}
0.1356 5.0 1250 0.8298 {'accuracy': 0.887}
0.0431 6.0 1500 0.9589 {'accuracy': 0.883}
0.0431 7.0 1750 1.0109 {'accuracy': 0.883}
0.0202 8.0 2000 1.0334 {'accuracy': 0.884}
0.0202 9.0 2250 1.0635 {'accuracy': 0.88}
0.0095 10.0 2500 1.0878 {'accuracy': 0.88}

Framework versions

  • PEFT 0.13.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1