Edit model card

image_classification

(this model was not trained using Trainer API) This model is a fine-tuned version of EfficientNetB7 on the Tyre-Quality-Classification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2341
  • Accuracy: 91.9355%

Intended uses & limitations

Can be used for quality control to identify the condition of tyres

Training and evaluation data

Data can be seen at Weights and Biases

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • train_set: 1434
  • test_set: 372
  • optimizer: SGD with momentum = 0.9
  • num_epochs: 5

Example usage

from efficientnet_pytorch import EfficientNet
import torch
import torchvision.transforms as transforms

model = EfficientNet.from_name('efficientnet-b7')
model._fc= torch.nn.Linear(in_features=model._fc.in_features, out_features=len(annotations_map), bias=True)
model.load_state_dict(torch.load('/content/efficientnetb7_tyrequality_classifier.pth'))

model.eval()
img = Image.open('/content/defective-tires-cause-accidents-min.jpg')
test_transform = transforms.Compose([
    transforms.Resize(224),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406],
                          [0.229, 0.224, 0.225])
])
input_data = test_transform(img).unsqueeze(0)

with torch.no_grad():
    output = model(input_data)

_, predicted_class = torch.max(output, 1)

probs = torch.nn.functional.softmax(output, dim=1)
conf, _ = torch.max(probs, 1)

print('Predicted Class:', predicted_class.item())
print('Predicted Label:', id2label[predicted_class.item()])
print(f'Confidence: {conf.item()*100}%')

plt.title(id2label[predicted_class.item()])
plt.axis("off")
plt.imshow(img)
plt.show()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for faldeus0092/tyre-classification-efficientnetb7

Finetunes
1 model