Edit model card

Model Card for Model ID

Model Details

Model Description

This model is a fine-tuned version of google/gemma-2-2b-it, designed to answer questions related to champions from the online game League of Legends. By using a custom dataset of champion stories and lore, the model is optimized to generate responses in Korean.

  • Developed by: Dohyun Kim, Jongbong Lee, Jaehoon Kim
  • Model type: LLM Finetuned Model
  • Language(s) (NLP): Korean
  • Finetuned from model [optional]: google/gemma-2-2b-it

Training Details

Training Data

The dataset was created by scraping champion lore from the official League of Legends website, transforming the content into Q&A format using large language models. You can find the dataset at fanlino/lol-champion-qa.

# List of champions
champions = [
    "aatrox", "ahri", "akali", "akshan", "alistar", "amumu", "anivia", "annie", "aphelios", "ashe",
    "aurelionsol", "azir", "bard", "belveth", "blitzcrank", "brand", "braum", "caitlyn", "camille",
    "cassiopeia", "chogath", "corki", "darius", "diana", "drmundo", "draven", "ekko", "elise",
    "evelynn", "ezreal", "fiddlesticks", "fiora", "fizz", "galio", "gangplank", "garen", "gnar",
    "gragas", "graves", "gwen", "hecarim", "heimerdinger", "illaoi", "irelia", "ivern", "janna",
    "jarvaniv", "jax", "jayce", "jhin", "jinx", "kaisa", "kalista", "karma", "karthus", "kassadin",
    "katarina", "kayle", "kayn", "kennen", "khazix", "kindred", "kled", "kogmaw", "leblanc", "leesin",
    "leona", "lillia", "lissandra", "lucian", "lulu", "lux", "malphite", "malzahar", "maokai",
    "masteryi", "milio", "missfortune", "mordekaiser", "morgana", "naafiri", "nami", "nasus",
    "nautilus", "neeko", "nidalee", "nilah", "nocturne", "nunu", "olaf", "orianna", "ornn",
    "pantheon", "poppy", "pyke", "qiyana", "quinn", "rakan", "rammus", "reksai", "rell", "renataglasc",
    "renekton", "rengar", "riven", "rumble", "ryze", "samira", "sejuani", "senna", "seraphine", "sett",
    "shaco", "shen", "shyvana", "singed", "sion", "sivir", "skarner", "sona", "soraka", "swain",
    "sylas", "syndra", "tahmkench", "taliyah", "talon", "taric", "teemo", "thresh", "tristana",
    "trundle", "tryndamere", "twistedfate", "twitch", "udyr", "urgot", "varus", "vayne", "veigar",
    "velkoz", "vex", "vi", "viego", "viktor", "vladimir", "volibear", "warwick", "monkeyking", "xayah",
    "xerath", "xinzhao", "yasuo", "yone", "yorick", "yuumi", "zac", "zed", "ziggs", "zilean", "zoe", "zyra"
]

print(f"The total number of champions: {len(champions)}")

# Base URL for the champion story in Korean
base_url = "https://universe.leagueoflegends.com/ko_KR/story/champion/"

# Function to scrape the Korean name and background story of a champion
def scrape_champion_data(champion):
    url = base_url + champion + "/"
    response = requests.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, 'html.parser')

        # Extract the Korean name from the <title> tag
        korean_name = soup.find('title').text.split('-')[0].strip()

        # Extract the background story from the meta description
        meta_description = soup.find('meta', {'name': 'description'})
        if meta_description:
            background_story = meta_description.get('content').replace('\n', ' ').strip()
        else:
            background_story = "No background story available"

        return korean_name, background_story
    else:
        return None, None

# Open the CSV file for writing
with open("champion_bs.csv", "w", newline='', encoding='utf-8') as csvfile:
    # Define the column headers
    fieldnames = ['url-name', 'korean-name', 'background-story']

    # Create a CSV writer object
    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

    # Write the header
    writer.writeheader()

    # Scrape data for each champion and write to CSV
    for champion in champions:
        korean_name, background_story = scrape_champion_data(champion)
        if korean_name and background_story:
            writer.writerow({
                'url-name': champion,
                'korean-name': korean_name,
                'background-story': background_story
            })
            print(f"Scraped data for {champion}: {korean_name}")
        else:
            print(f"Failed to scrape data for {champion}")

print("Data scraping complete. Saved to champion_bs.csv")

Training Procedure

Environment Setup

The model was fine-tuned using a quantization-aware training approach to optimize memory usage and computational efficiency. The environment was set up with 4-bit quantization using torch and transformers, and the LoRA (Low-Rank Adaptation) method was applied to specific layers of the model to improve task performance.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

model_id = "google/gemma-2-2b-it"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=qlora_config,
    device_map="auto",
    attn_implementation=attn_implementation
)

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)

QLoRA Setting

from peft import LoraConfig, get_peft_model

def find_linear_layers(model):
    linear_layers = set()
    for name, module in model.named_modules():
        if isinstance(module, bnb.nn.Linear4bit):
            names = name.split('.')
            layer_name = names[-1]
            if layer_name != 'lm_head':
                linear_layers.add(layer_name)
    return list(linear_layers)

lora_target_modules = find_linear_layers(model)

lora_config = LoraConfig(
    r=64,
    lora_alpha=32,
    target_modules=lora_target_modules,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

model = get_peft_model(model, lora_config)

Loading Training Datasets

To prepare the training data, the champion stories were converted into a question-answer format. The dataset was structured using a chat-style template to ensure compatibility with the Gemma2 model’s architecture.

data = [
{ "q": "λŒ€λΆ€λΆ„μ˜ ν•„λ©Έμžκ°€ μ•Œκ³  μžˆλŠ” ν˜„μ‹€ 차원은 무엇인가?", "a": "λŒ€λΆ€λΆ„μ˜ ν•„λ©ΈμžλŠ” 물질 μ„Έκ³„λΌλŠ” ν•˜λ‚˜μ˜ ν˜„μ‹€ μ°¨μ›λ§Œ μ•Œκ³  μžˆλ‹€." },
{ "q": "μ˜€λ‘œλΌκ°€ μœ λ…„ μ‹œμ ˆμ„ 보낸 곳은 어디인가?", "a": "μ˜€λ‘œλΌλŠ” λΈŒλ€Όλ‹ˆ λΆ€μ‘±μ˜ κ³ ν–₯이자 μ™Έλ”΄ λ§ˆμ„μΈ μ•„λ¬΄μš°μ—μ„œ μœ λ…„ μ‹œμ ˆμ„ λ³΄λƒˆλ‹€." },
{ "q": "μ˜€λ‘œλΌκ°€ μžμ‹ μ„ 이해해쀀 μœ μΌν•œ κ°€μ‘± ꡬ성원은 λˆ„κ΅¬μΈκ°€?", "a": "였둜라의 이λͺ¨ν• λ¨Έλ‹ˆ ν•˜λΆ€μš°κ°€ 였둜라λ₯Ό μ§„μ‹¬μœΌλ‘œ λ°›μ•„λ“€μ˜€λ‹€." },
...]

qa_df = pd.DataFrame(data, columns=["q", "a"])
qa_dataset = Dataset.from_pandas(qa_df)

We use gemma2's chat format template.

<start_of_turn>user
{Qustion}<end_of_turn>
<start_of_turn>model
{Answer}
<end_of_turn>

And we write a function to structure a dataset.

def format_chat_prompt(example):
    chat_data = [
        {"role": "user", "content": example["q"]},
        {"role": "assistant", "content": example["a"]}
    ]
    example["text"] = tokenizer.apply_chat_template(chat_data, tokenize=False)
    return example

dataset = dataset.map(format_chat_prompt, num_proc=4)

The actual format results in the following text.

<bos>
<start_of_turn>user
μ•„νŠΈλ‘μŠ€κ°€ νƒœμ–΄λ‚œ 곳은 어디인가?<end_of_turn>
<start_of_turn>model
μ•„νŠΈλ‘μŠ€λŠ” μŠˆλ¦¬λ§ˆμ—μ„œ νƒœμ–΄λ‚¬λ‹€.<end_of_turn>'}

Training Model

The model was then trained using the SFTTrainer class, with settings such as a batch size of 1, 10 gradient accumulation steps, and 10 epochs. The optimizer used was paged_adamw_32bit.

import transformers
from trl import SFTTrainer

# Training arguments
training_args = TrainingArguments(
    output_dir=OUTPUT_MODEL_PATH,
    per_device_train_batch_size=1, # steps_per_epoch = ceil(total_samples / (batch_size * gradient_accumulation_steps))
    gradient_accumulation_steps=10, # total_samples means len(dataset)
    num_train_epochs=10,
    learning_rate=2e-4,
    fp16=False,
    bf16=False,
    logging_steps=len(dataset)//10,
    optim="paged_adamw_32bit",
    logging_dir="./logs",
    save_strategy="epoch",
    evaluation_strategy="no",
    do_eval=False,
    group_by_length=True,
    report_to="none"
)

# Initialize trainer
trainer = SFTTrainer(
    model=model,
    train_dataset=dataset,
    peft_config=lora_config,
    dataset_text_field="text",
    max_seq_length=512,
    tokenizer=tokenizer,
    args=training_args,
    packing=False,
)

# Train the model
trainer.train()

Testing Model

We created a helper function to ask the question in the format.

def generate_response(prompt, model, tokenizer, temperature=0.1):
    formatted_prompt=f"""<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
"""
    inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda")
    outputs = model.generate(
        **inputs,
        max_new_tokens=256,
        do_sample=temperature > 0,
        temperature=temperature
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=False)

Question

prompt = "μ‘°μ΄λŠ” μ•„μš°λ λ¦¬μ˜¨ μ†”ν•œν…Œ 무슨 약속을 ν–ˆμ–΄?"
response = generate_response(prompt, model, tokenizer)
print(response)

μ˜ˆμƒ λ‹΅λ³€

μ‘°μ΄λŠ” μ•„μš°λ λ¦¬μ˜¨ 솔을 지킀기 μœ„ν•΄ ν•  수 μžˆλŠ” 것은 무엇이든 해주리라 μ•½μ†ν–ˆλ‹€.

κ²°κ³Ό(Finetuned Model)

<bos><start_of_turn>user
μ‘°μ΄λŠ” μ•„μš°λ λ¦¬μ˜¨ μ†”ν•œν…Œ 무슨 약속을 ν–ˆμ–΄?<end_of_turn>
<start_of_turn>model
μ‘°μ΄λŠ” μ•„μš°λ λ¦¬μ˜¨ 솔을 지킀기 μœ„ν•΄ ν•  수 μžˆλŠ” 것은 무엇이든 해주리라 μ•½μ†ν–ˆλ‹€.<end_of_turn>

κ²°κ³Ό(Base Model)

<bos><start_of_turn>user
μ‘°μ΄λŠ” μ•„μš°λ λ¦¬μ˜¨ μ†”ν•œν…Œ 무슨 약속을 ν–ˆμ–΄?<end_of_turn>
<start_of_turn>model
 μ‘°μ΄λŠ” μ•„μš°λ λ¦¬μ˜¨ μ†”ν•œν…Œ **무슨 약속을 ν–ˆλŠ”μ§€**에 λŒ€ν•œ μ •λ³΄λŠ” 아직 μ•Œλ €μ§€μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€. 

μ‘°μ΄λŠ” μ•„μš°λ λ¦¬μ˜¨ μ†”ν•œν…Œ 약속을 ν–ˆλŠ”μ§€μ— λŒ€ν•œ μ΄μ•ΌκΈ°λŠ” λͺ‡ 가지 μœ ν–‰ν•˜λŠ” 밈과 κ΄€λ ¨λœ κ²ƒμœΌλ‘œ λ³΄μž…λ‹ˆλ‹€. 

* **μ•„μš°λ λ¦¬μ˜¨ 솔:**  이것은 2023λ…„ 1월에 μΆœμ‹œλœ μ•„μš°λ λ¦¬μ˜¨ μ†”μ˜ μ΄λ¦„μž…λ‹ˆλ‹€. 
* **쑰이:**  이것은 2023λ…„ 1월에 μΆœμ‹œλœ μ•„μš°λ λ¦¬μ˜¨ μ†”μ˜ μ΄λ¦„μž…λ‹ˆλ‹€. 

μ΄λŸ¬ν•œ λ°ˆλ“€μ€ ν₯λ―Έλ‘­μ§€λ§Œ, μ‹€μ œλ‘œ μ‘°μ΄λŠ” μ•„μš°λ λ¦¬μ˜¨ μ†”ν•œν…Œ 무슨 약속을 ν–ˆλŠ”μ§€μ— λŒ€ν•œ μ •ν™•ν•œ μ •λ³΄λŠ” 아직 μ•Œλ €μ§€μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€. 


<end_of_turn>

In contrast, the base model’s response was less accurate, highlighting the improvements made through fine-tuning.

Summary

The code discussed above can be found at the following link: lol_lore.ipynb

Downloads last month
49
Safetensors
Model size
2.61B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fanlino/gemma-2-2b-lol

Base model

google/gemma-2-2b
Finetuned
(125)
this model
Quantizations
2 models

Dataset used to train fanlino/gemma-2-2b-lol