File size: 3,537 Bytes
30c1de8 4f1298a 79ff326 4f1298a 79ff326 979164d 30c1de8 79ff326 30c1de8 979164d 30c1de8 4f1298a 30c1de8 0b62128 30c1de8 cb7e99f 30c1de8 ff10e6a 30c1de8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import pandas as pd
import numpy as np
# import onnxruntime as ort
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch
def is_gpu_available():
"""Check if the python package `onnxruntime-gpu` is installed."""
return torch.cuda.is_available()
class PytorchWorker:
"""Run inference using ONNX runtime."""
def __init__(self,
model_path: str,
model_name: str,
number_of_categories: int = 1784):
def _load_model(model_name, model_path):
print("Setting up Pytorch Model")
self.device = torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using devide: {self.device}")
from torchvision.models import vit_b_16
model = vit_b_16(weights=None)
model.heads.head = torch.nn.Linear(model.heads.head.in_features,
number_of_categories)
model = model.to(self.device)
model.load_state_dict(torch.load(model_path, map_location=self.device))
# if not torch.cuda.is_available():
# model_ckpt = torch.load(model_path, map_location=torch.device("cpu"))
# else:
# model_ckpt = torch.load(model_path)
# model_ckpt = torch.load(model_path, map_location=self.device)
# model.load_state_dict(model_ckpt)
return model.eval()
self.model = _load_model(model_name, model_path)
self.transforms = T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
def predict_image(self, image: np.ndarray) -> list():
"""Run inference using ONNX runtime.
:param image: Input image as numpy array.
:return: A list with logits and confidences.
"""
logits = self.model(
self.transforms(image).unsqueeze(0).to(self.device))
return logits.tolist()
def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
"""Make submission with given """
model = PytorchWorker(model_path, model_name)
predictions = []
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
image_path = os.path.join(images_root_path, row.filename)
test_image = Image.open(image_path).convert("RGB")
logits = model.predict_image(test_image)
predictions.append(np.argmax(logits))
test_metadata["class_id"] = predictions
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
if __name__ == "__main__":
import zipfile
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
zip_ref.extractall("/tmp/data")
MODEL_PATH = "./model.pth"
MODEL_NAME = "hf-hub:timm/eva02_large_patch14_clip_336.merged2b_ft_inat21"
metadata_file_path = "./SnakeCLEF2024_TestMetadata.csv"
test_metadata = pd.read_csv(metadata_file_path)
# metadata_file_path = "./unit_test.csv"
# test_metadata = pd.read_csv(metadata_file_path)
# images_root_path = "SnakeCLEF2023-large_size"
make_submission(
test_metadata=test_metadata,
model_path=MODEL_PATH,
model_name=MODEL_NAME,
)
|