metadata
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small - Greek (el)
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 el
type: mozilla-foundation/common_voice_11_0
config: el
split: test
args: el
metrics:
- name: Wer
type: wer
value: 25.696508172362552
Whisper Small - Greek (el)
This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 el dataset. It achieves the following results on the evaluation set:
- Loss: 0.4642
- Wer: 25.6965
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0032 | 18.01 | 1000 | 0.4642 | 25.6965 |
0.0006 | 37.01 | 2000 | 0.5369 | 26.4395 |
0.0003 | 56.01 | 3000 | 0.5703 | 26.3187 |
0.0002 | 75.0 | 4000 | 0.5913 | 26.4302 |
0.0001 | 94.0 | 5000 | 0.5996 | 26.4952 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1.dev0
- Tokenizers 0.12.1