See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama_v1.1
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 2bfee70655ebbccb_train_data.json
ds_type: json
field: content
path: /workspace/input_data/2bfee70655ebbccb_train_data.json
type: completion
debug: null
distributed_type: ddp
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: fats-fme/6d20e916-0301-420f-ac45-15677684fd9f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory_MB: 40000
max_steps: 1800
micro_batch_size: 4
mlflow_experiment_name: /tmp/2bfee70655ebbccb_train_data.json
model_type: AutoModelForCausalLM
num_devices: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6d20e916-0301-420f-ac45-15677684fd9f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6d20e916-0301-420f-ac45-15677684fd9f
warmup_steps: 100
world_size: 2
xformers_attention: null
6d20e916-0301-420f-ac45-15677684fd9f
This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4870
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 82
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4795 | 0.0369 | 1 | 1.4870 |
1.4298 | 0.2581 | 7 | 1.4870 |
1.4654 | 0.5161 | 14 | 1.4870 |
1.4517 | 0.7742 | 21 | 1.4870 |
2.7678 | 1.0323 | 28 | 1.4870 |
1.3889 | 1.2903 | 35 | 1.4870 |
1.4608 | 1.5484 | 42 | 1.4870 |
1.4305 | 1.8065 | 49 | 1.4870 |
1.5073 | 2.0645 | 56 | 1.4870 |
1.4382 | 2.3226 | 63 | 1.4870 |
1.4362 | 2.5806 | 70 | 1.4870 |
1.4102 | 2.8387 | 77 | 1.4870 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for fats-fme/6d20e916-0301-420f-ac45-15677684fd9f
Base model
TinyLlama/TinyLlama_v1.1