Model Information

Quantized version of meta-llama/Llama-3.2-3B using torch.float32 for quantization tuning.

  • 4 bits (INT4)
  • group size = 128
  • Symmetrical Quantization
  • Method AutoGPTQ

Quantization framework: Intel AutoRound

Note: this INT4 version of Llama-3.2-3B has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

python -m pip install <package> --upgrade
  • accelerate==1.0.1
  • auto_gptq==0.7.1
  • neural_compressor==3.1
  • torch==2.3.0+cpu
  • torchaudio==2.5.0+cpu
  • torchvision==0.18.0+cpu
  • transformers==4.45.2

Step 2 Build Intel Autoround wheel from sources

python -m pip install git+https://github.com/intel/auto-round.git

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "meta-llama/Llama-3.2-3B"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym = 4, 128, True
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym)
  autoround.quantize()
  output_dir = "./AutoRound/meta-llama_Llama-3.2-3B-auto_gptq-int4-gs128-sym"
  autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)

License

Llama 3.2 Community License

Disclaimer

This quantized model comes with no warrenty. It has been developed only for research purposes.

Downloads last month
10
Safetensors
Model size
772M params
Tensor type
F32
I32
FP16
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for fbaldassarri/meta-llama_Llama-3.2-3B-auto_gptq-int4-gs128-sym

Quantized
(43)
this model