Model Information

Quantized version of meta-llama/Llama-3.2-3B using torch.float32 for quantization tuning.

  • 8 bits (INT8)
  • group size = 128
  • Symmetrical Quantization
  • Method WoQ (AutoRound format)

Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)

Quantization framework: Intel AutoRound

Note: this INT8 version of Llama-3.2-3B has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz
tar -xvzf v0.4.3.tar.gz
cd auto-round-0.4.3
pip install -r requirements-cpu.txt --upgrade

Step 2 Build Intel AutoRound wheel from sources

pip install -vvv --no-build-isolation -e .[cpu]

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "meta-llama/Llama-3.2-3B"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym, device, amp = 8, 128, True, 'cpu', False
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
  autoround.quantize()
  output_dir = "./AutoRound/meta-llama_Llama-3.2-3B-auto_round-int8-gs128-sym"
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)

License

Llama 3.2 Community License

Disclaimer

This quantized model comes with no warrenty. It has been developed only for research purposes.

Downloads last month
19
Safetensors
Model size
1.13B params
Tensor type
F32
·
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for fbaldassarri/meta-llama_Llama-3.2-3B-auto_round-int8-gs128-sym

Quantized
(54)
this model

Collection including fbaldassarri/meta-llama_Llama-3.2-3B-auto_round-int8-gs128-sym