See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: numind/NuExtract-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 28ffc8f87a41ecca_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/28ffc8f87a41ecca_train_data.json
type:
field_input: text
field_instruction: input
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: fedovtt/1f5f38bf-9dbe-4942-bd85-a0e813ac25eb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 78GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/28ffc8f87a41ecca_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 220af8a5-a26e-44da-bb9b-ec19b17817cf
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 220af8a5-a26e-44da-bb9b-ec19b17817cf
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true
1f5f38bf-9dbe-4942-bd85-a0e813ac25eb
This model is a fine-tuned version of numind/NuExtract-v1.5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8393
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 1.3838 |
5.2756 | 0.0003 | 5 | 1.3188 |
4.9755 | 0.0005 | 10 | 1.1316 |
3.4879 | 0.0008 | 15 | 0.9610 |
3.783 | 0.0010 | 20 | 0.8781 |
2.8904 | 0.0013 | 25 | 0.8458 |
3.3963 | 0.0015 | 30 | 0.8393 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2