See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2.5-7B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: data.jsonl
ds_type: json
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
hub_model_id: femT-data/qwen2.5-7B-instruct-ner-tuned
sequence_len: 4096 # supports up to 8192
sample_packing: false
pad_to_sequence_len:
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
qwen2.5-7B-instruct-ner-tuned
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1159
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1314 | 0.9630 | 13 | 0.1159 |
Framework versions
- PEFT 0.11.1
- Transformers 4.43.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 10