TiELECTRA BiEncoder Model
This model is a sentence-transformers model for the Tigrinya language based on TiELECTRA-small. The maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Using Sentence-Transformers
Using this model becomes easy when you have sentence-transformersinstalled:
pip install -U sentence-transformers
Then use the model as follows:
from sentence_transformers import SentenceTransformer
sentences = ["ሓደ ሰብኣይ ፈረስ ይጋልብ ኣሎ።", "ሓንቲ ጓል ክራር ትጻወት ኣላ።"]
model = SentenceTransformer('fgaim/tielectra-bi-encoder')
embeddings = model.encode(sentences)
print(embeddings)
Using 🤗 Transformers
Use the transformers library as follows: Pass the input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
import torch
from transformers import AutoModel, AutoTokenizer
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["ሓደ ሰብኣይ ፈረስ ይጋልብ ኣሎ።", "ሓንቲ ጓል ክራር ትጻወት ኣላ።"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("fgaim/tielectra-bi-encoder")
model = AutoModel.from_pretrained("fgaim/tielectra-bi-encoder")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
print("Sentence embeddings:", sentence_embeddings)
Architecture
Base Model
The model properties:
Model Size | Layers | Attn. Heads | Hidden Size | FFN | Parameters | Max. Seq |
---|---|---|---|---|---|---|
SMALL | 12 | 4 | 256 | 1024 | 14M | 512 |
BiEncoder Model
- Max Seq Length:
512
- Word embedding dimension:
256
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ElectraModel
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Cite
If you use this model in your product or research, you can cite it as follows:
@article{Fitsum2021TiPLMs,
author={Fitsum Gaim and Wonsuk Yang and Jong C. Park},
title={Monolingual Pre-trained Language Models for Tigrinya},
year=2021,
publisher={WiNLP 2021 co-located EMNLP 2021}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.