|
--- |
|
language: ti |
|
widget: |
|
- text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" |
|
datasets: |
|
- TLMD |
|
- NTC |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: tielectra-small-pos |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.9456 |
|
- name: Precision |
|
type: precision |
|
value: 0.9456 |
|
- name: Recall |
|
type: recall |
|
value: 0.9456 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9456 |
|
--- |
|
|
|
|
|
# Tigrinya POS tagging with TiELECTRA |
|
|
|
This model is a fine-tuned version of [TiELECTRA](https://huggingface.co/fgaim/tielectra-small) on the NTC-v1 dataset (Tedla et al. 2016). |
|
|
|
|
|
## Basic usage |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
ti_pos = pipeline("token-classification", model="fgaim/tielectra-small-pos") |
|
ti_pos("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") |
|
``` |
|
|
|
|
|
## Training |
|
|
|
### Hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Results |
|
|
|
The model achieves the following results on the test set: |
|
- Loss: 0.2236 |
|
- Adj Precision: 0.9148 |
|
- Adj Recall: 0.9192 |
|
- Adj F1: 0.9170 |
|
- Adj Number: 1670 |
|
- Adv Precision: 0.8228 |
|
- Adv Recall: 0.8058 |
|
- Adv F1: 0.8142 |
|
- Adv Number: 484 |
|
- Con Precision: 0.9793 |
|
- Con Recall: 0.9743 |
|
- Con F1: 0.9768 |
|
- Con Number: 972 |
|
- Fw Precision: 0.5 |
|
- Fw Recall: 0.3214 |
|
- Fw F1: 0.3913 |
|
- Fw Number: 28 |
|
- Int Precision: 0.64 |
|
- Int Recall: 0.6154 |
|
- Int F1: 0.6275 |
|
- Int Number: 26 |
|
- N Precision: 0.9525 |
|
- N Recall: 0.9587 |
|
- N F1: 0.9556 |
|
- N Number: 3992 |
|
- Num Precision: 0.9825 |
|
- Num Recall: 0.9372 |
|
- Num F1: 0.9593 |
|
- Num Number: 239 |
|
- N Prp Precision: 0.9132 |
|
- N Prp Recall: 0.9404 |
|
- N Prp F1: 0.9266 |
|
- N Prp Number: 470 |
|
- N V Precision: 0.9667 |
|
- N V Recall: 0.9760 |
|
- N V F1: 0.9713 |
|
- N V Number: 416 |
|
- Pre Precision: 0.9645 |
|
- Pre Recall: 0.9592 |
|
- Pre F1: 0.9619 |
|
- Pre Number: 907 |
|
- Pro Precision: 0.9395 |
|
- Pro Recall: 0.9079 |
|
- Pro F1: 0.9234 |
|
- Pro Number: 445 |
|
- Pun Precision: 1.0 |
|
- Pun Recall: 0.9994 |
|
- Pun F1: 0.9997 |
|
- Pun Number: 1607 |
|
- Unc Precision: 0.9286 |
|
- Unc Recall: 0.8125 |
|
- Unc F1: 0.8667 |
|
- Unc Number: 16 |
|
- V Precision: 0.7609 |
|
- V Recall: 0.8974 |
|
- V F1: 0.8235 |
|
- V Number: 78 |
|
- V Aux Precision: 0.9581 |
|
- V Aux Recall: 0.9786 |
|
- V Aux F1: 0.9682 |
|
- V Aux Number: 654 |
|
- V Ger Precision: 0.9183 |
|
- V Ger Recall: 0.9415 |
|
- V Ger F1: 0.9297 |
|
- V Ger Number: 513 |
|
- V Imf Precision: 0.9473 |
|
- V Imf Recall: 0.9442 |
|
- V Imf F1: 0.9458 |
|
- V Imf Number: 914 |
|
- V Imv Precision: 0.8163 |
|
- V Imv Recall: 0.5714 |
|
- V Imv F1: 0.6723 |
|
- V Imv Number: 70 |
|
- V Prf Precision: 0.8927 |
|
- V Prf Recall: 0.8776 |
|
- V Prf F1: 0.8851 |
|
- V Prf Number: 294 |
|
- V Rel Precision: 0.9535 |
|
- V Rel Recall: 0.9485 |
|
- V Rel F1: 0.9510 |
|
- V Rel Number: 757 |
|
- Overall Precision: 0.9456 |
|
- Overall Recall: 0.9456 |
|
- Overall F1: 0.9456 |
|
- Overall Accuracy: 0.9456 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.10.3 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.10.2 |
|
- Tokenizers 0.10.1 |
|
|
|
|
|
## Citation |
|
|
|
If you use this model in your product or research, please cite as follows: |
|
|
|
``` |
|
@article{Fitsum2021TiPLMs, |
|
author= {Fitsum Gaim and Wonsuk Yang and Jong C. Park}, |
|
title= {Monolingual Pre-trained Language Models for Tigrinya}, |
|
year= 2021, |
|
publisher= {WiNLP 2021/EMNLP 2021} |
|
} |
|
``` |
|
|
|
|
|
## References |
|
|
|
``` |
|
Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016. |
|
Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus. |
|
International Journal Of Computer Applications 146 pp. 33-41 (2016). |
|
``` |
|
|