tiroberta-sentiment / README.md
fgaim's picture
Trained
0320faa
|
raw
history blame
2.12 kB
metadata
language: ti
widget:
  - text: ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር
datasets:
  - TLMD
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: tiroberta-sentiment
    results:
      - task:
          name: Text Classification
          type: text-classification
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.828
          - name: F1
            type: f1
            value: 0.8476527900797165
          - name: Precision
            type: precision
            value: 0.760731319554849
          - name: Recall
            type: recall
            value: 0.957

Sentiment Analysis for Tigrinya with TiRoBERTa

This model is a fine-tuned version of TiRoBERTa on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).

Basic usage

from transformers import pipeline

ti_sent = pipeline("sentiment-analysis", model="fgaim/tiroberta-sentiment")
ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር")

Training

Hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Results

It achieves the following results on the evaluation set:

  • F1: 0.8477
  • Precision: 0.7607
  • Recall: 0.957
  • Accuracy: 0.828
  • Loss: 0.6796

Framework versions

  • Transformers 4.10.3
  • Pytorch 1.9.0+cu111
  • Datasets 1.10.2
  • Tokenizers 0.10.1

Citation

If you use this model in your product or research, please cite as follows:

@article{Fitsum2021TiPLMs,
  author={Fitsum Gaim and Wonsuk Yang and Jong C. Park},
  title={Monolingual Pre-trained Language Models for Tigrinya},
  year=2021,
  publisher={WiNLP 2021/EMNLP 2021}
}

References

Tela, A., Woubie, A. and Hautamäki, V. 2020.
Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya.
ArXiv, abs/2006.07698.