xLakeChat / README.md
fhai50032's picture
Upload folder using huggingface_hub
0022c02 verified
|
raw
history blame
1.6 kB
---
tags:
- merge
- mergekit
- mistral
- xDAN-AI/xDAN-L1-Chat-RL-v1
- fhai50032/BeagleLake-7B-Toxic
base_model:
- xDAN-AI/xDAN-L1-Chat-RL-v1
- fhai50032/BeagleLake-7B-Toxic
---
# xLakeChat
xLakeChat is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [xDAN-AI/xDAN-L1-Chat-RL-v1](https://huggingface.co/xDAN-AI/xDAN-L1-Chat-RL-v1)
* [fhai50032/BeagleLake-7B-Toxic](https://huggingface.co/fhai50032/BeagleLake-7B-Toxic)
## 🧩 Configuration
```yaml
models:
- model: senseable/WestLake-7B-v2
# no params for base model
- model: xDAN-AI/xDAN-L1-Chat-RL-v1
parameters:
weight: 0.73
density: 0.64
- model: fhai50032/BeagleLake-7B-Toxic
parameters:
weight: 0.46
density: 0.55
merge_method: dare_ties
base_model: senseable/WestLake-7B-v2
parameters:
normalize: true
int8_mask: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "fhai50032/xLakeChat"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```