ViPE-M-CTX7 / README.md
fittar's picture
Update README.md
b1d4d73
|
raw
history blame
4.77 kB
---
language:
- en
pipeline_tag: text2text-generation
inference: false
---
# ViPE-M-CTX7
<!-- Provide a quick summary of what the model is/does. -->
ViPE: Visualize Pretty-much Everything, is the first automated model for translating any arbitraty piece of text into a visualizable prompt. It helps any text-to-image model in figurative or non-lexical language visualizations.
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [Computer Graphics Group, University of Tuebingen](https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/computergrafik/lehrstuhl/)
- **Model type:** Auto-Regressive
- **Language:** English
- **License:** [MIT License for Non-Commercial Use](https://github.com/Hazel1994/ViPE/blob/main/LICENSE)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [Github](https://github.com/Hazel1994/ViPE)
- **Paper:** [EMNLP2023](https://2023.emnlp.org/program/)
### Down Stream Applications
ViPE provides a robust backbone for many practical applications such as music video generation and creative writings.
- #### Music Video Genrations
- **Repository:** [Github](https://github.com/Hazel1994/ViPE)
- **Demo:** [ViPE Videos](youtube link)
- #### Creative Writing
- **Demo:** [Hugging Face Playground](https://huggingface.co/spaces/fittar/ViPE)
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
You can directly use the model to generate detailed prompts for any arbitrary text.
```python
from transformers import GPT2LMHeadModel, GPT2Tokenizer
def generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1):
#mark the text with special tokens
text=[tokenizer.eos_token + i + tokenizer.eos_token for i in text]
batch=tokenizer(text, padding=True, return_tensors="pt")
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
#how many new tokens to generate at max
max_prompt_length=50
generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature)
#return only the generated prompts
pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True)
return pred_caps
device='cpu'
model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-M-CTX7')
model.to(device)
#ViPE-M's tokenizer is identical to that of GPT2-Medium
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
tokenizer.pad_token = tokenizer.eos_token
# A list of abstract/figurative or any arbitrary combinations of keywords
texts=['lalala', 'I wanna start learning', 'free your mind; you will see the other side of life', 'brave; fantasy']
prompts=generate(texts,model,tokenizer,do_sample=True,device=device)
for t,p in zip(texts,prompts):
print('{} --> {}'.format(t,p))
lalala --> A group of people chanting "la la la" around a bonfire on a beach at night
I wanna start learning --> A child sitting in a library surrounded by books, excitedly flipping through pages of a book
free your mind; you will see the other side of life --> An astronaut floating in space with a sense of floating weightlessness, looking down towards the earth
brave; fantasy --> A brave knight with shining armor fighting a fierce dragon in a misty forest
```
### Recommendations
You can use either a comma or a semicolon to combine multiple keywords. for example ['dark, fantasy, brave'] or ['This is gonna be the best day of my life; do you agree?'].
However, a semicolon draws a stronger boundary between the keywords and encourages the model to transfer the last keyword in a given context (previous keywords).
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Citation
If you find ViPE useful, please cite our paper.
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
## Model Card Contact
[Hassan Shahmohammadi](https://fittar.me/)