metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.86
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1317 | 1.0 | 75 | 2.0386 | 0.33 |
1.36 | 2.0 | 150 | 1.4142 | 0.58 |
1.1456 | 3.0 | 225 | 1.1110 | 0.66 |
0.6417 | 4.0 | 300 | 1.0142 | 0.69 |
0.3324 | 5.0 | 375 | 0.5881 | 0.82 |
0.2208 | 6.0 | 450 | 0.5516 | 0.84 |
0.3346 | 7.0 | 525 | 0.5267 | 0.87 |
0.2309 | 8.0 | 600 | 0.7404 | 0.8 |
0.0267 | 9.0 | 675 | 0.6636 | 0.8 |
0.0309 | 10.0 | 750 | 0.6390 | 0.84 |
0.0076 | 11.0 | 825 | 0.6949 | 0.85 |
0.0053 | 12.0 | 900 | 0.6405 | 0.87 |
0.005 | 13.0 | 975 | 0.7065 | 0.84 |
0.004 | 14.0 | 1050 | 0.8570 | 0.84 |
0.0031 | 15.0 | 1125 | 0.6735 | 0.88 |
0.0028 | 16.0 | 1200 | 0.7023 | 0.85 |
0.0027 | 17.0 | 1275 | 0.6823 | 0.86 |
0.0369 | 18.0 | 1350 | 0.7320 | 0.85 |
0.0024 | 19.0 | 1425 | 0.6656 | 0.86 |
0.0023 | 20.0 | 1500 | 0.6628 | 0.86 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3