flaneur-ml's picture
End of training
17faaec verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-us_en_bs128
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train[450:]
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.3417945690672963

whisper-tiny-us_en_bs128

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8372
  • Wer Ortho: 0.3399
  • Wer: 0.3418

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.1633 6.25 25 0.5503 0.3177 0.3164
0.0027 12.5 50 0.6676 0.3288 0.3294
0.0011 18.75 75 0.7095 0.3134 0.3182
0.0012 25.0 100 0.7296 0.3196 0.3176
0.0014 31.25 125 0.7460 0.3541 0.3583
0.005 37.5 150 0.7059 0.4405 0.4610
0.0009 43.75 175 0.7803 0.3924 0.3961
0.0004 50.0 200 0.7996 0.3455 0.3512
0.0001 56.25 225 0.8074 0.3411 0.3442
0.0001 62.5 250 0.8146 0.3424 0.3459
0.0001 68.75 275 0.8197 0.3430 0.3459
0.0001 75.0 300 0.8239 0.3399 0.3424
0.0001 81.25 325 0.8274 0.3374 0.3400
0.0001 87.5 350 0.8303 0.3356 0.3383
0.0001 93.75 375 0.8324 0.3368 0.3400
0.0001 100.0 400 0.8341 0.3368 0.3388
0.0001 106.25 425 0.8354 0.3405 0.3424
0.0001 112.5 450 0.8364 0.3399 0.3418
0.0001 118.75 475 0.8371 0.3399 0.3418
0.0001 125.0 500 0.8372 0.3399 0.3418

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3